Cellular structure engineering of additive manufactured CoCrFeMnNi high-entropy composite: The role of hard ceramic reinforcements in elemental segregation of constitutive elements

IF 4.2 Q2 ENGINEERING, MANUFACTURING
Soung Yeoul Ahn , Farahnaz Haftlang , Eun Seong Kim , Ji Sun Lee , Sang Guk Jeong , Jae Bok Seol , Hyunjoo Choi , Hyoung Seop Kim
{"title":"Cellular structure engineering of additive manufactured CoCrFeMnNi high-entropy composite: The role of hard ceramic reinforcements in elemental segregation of constitutive elements","authors":"Soung Yeoul Ahn ,&nbsp;Farahnaz Haftlang ,&nbsp;Eun Seong Kim ,&nbsp;Ji Sun Lee ,&nbsp;Sang Guk Jeong ,&nbsp;Jae Bok Seol ,&nbsp;Hyunjoo Choi ,&nbsp;Hyoung Seop Kim","doi":"10.1016/j.addlet.2023.100172","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores cellular structures in TiC/B<sub>4</sub>C<img>CoCrFeMnNi high-entropy composites (HECs) fabricated by direct energy deposition (DED) additive manufacturing process, investigating the role of TiC and B<sub>4</sub>C nano-paticles in enhancing mechanical properties. Despite larger dislocation cell structures and thinner boundaries in TiC/B<sub>4</sub>C<img>CoCrFeMnNi HECs compared to CoCrFeMnNi high-entropy alloy (HEA), they exhibit significantly higher hardness and strength, challenging traditional strength-size relationships. Additionally, we examine the behavior of ceramic nano-particles (TiC and B<sub>4</sub>C) with high melting points relative to matrix CoCrFeMnNi HEA. Rapid scanning prevents full nano-particle melting, leading to distinct element distribution of cell structure. These findings provide insights for selecting suitable nanoceramic particles in HEC development via metal additive manufacturing.</p></div>","PeriodicalId":72068,"journal":{"name":"Additive manufacturing letters","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277236902300052X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores cellular structures in TiC/B4CCoCrFeMnNi high-entropy composites (HECs) fabricated by direct energy deposition (DED) additive manufacturing process, investigating the role of TiC and B4C nano-paticles in enhancing mechanical properties. Despite larger dislocation cell structures and thinner boundaries in TiC/B4CCoCrFeMnNi HECs compared to CoCrFeMnNi high-entropy alloy (HEA), they exhibit significantly higher hardness and strength, challenging traditional strength-size relationships. Additionally, we examine the behavior of ceramic nano-particles (TiC and B4C) with high melting points relative to matrix CoCrFeMnNi HEA. Rapid scanning prevents full nano-particle melting, leading to distinct element distribution of cell structure. These findings provide insights for selecting suitable nanoceramic particles in HEC development via metal additive manufacturing.

增材制造CoCrFeMnNi高熵复合材料的胞状结构工程:硬质陶瓷增强剂在本构元素偏析中的作用
本研究探索了通过直接能量沉积(DED)增材制造工艺制备的TiC/B4CCoCrFeMnNi高熵复合材料(HECs)中的细胞结构,研究了TiC和B4C纳米颗粒在提高力学性能中的作用。尽管与CoCrFeMnNi高熵合金(HEA)相比,TiC/B4CCoCrFeMnNi HECs中的位错胞结构更大,边界更薄,但它们表现出显著更高的硬度和强度,挑战了传统的强度-尺寸关系。此外,我们还研究了具有高熔点的陶瓷纳米粒子(TiC和B4C)相对于基体CoCrFeMnNi HEA的行为。快速扫描可防止纳米颗粒完全熔化,导致细胞结构的元素分布明显。这些发现为通过金属增材制造在HEC开发中选择合适的纳米陶瓷颗粒提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Additive manufacturing letters
Additive manufacturing letters Materials Science (General), Industrial and Manufacturing Engineering, Mechanics of Materials
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
37 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信