Synthesis of Na0.02Bi0.98FeO3-δ through the standardized preparation of BiFeO3

Q1 Materials Science
Adán de Jesús Bautista-Morantes, Carlos Ordulio Calderón-Carvajal, Jairo Alberto Gómez-Cuaspud, Enrique Vera-López
{"title":"Synthesis of Na0.02Bi0.98FeO3-δ through the standardized preparation of BiFeO3","authors":"Adán de Jesús Bautista-Morantes,&nbsp;Carlos Ordulio Calderón-Carvajal,&nbsp;Jairo Alberto Gómez-Cuaspud,&nbsp;Enrique Vera-López","doi":"10.1016/j.mset.2023.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>This research describes the synthesis of the ferroelectric perovskite Na<sub>0.02</sub>Bi<sub>0.98</sub>FeO<sub>3-δ</sub> using a low-cost solid-state method starting from a bismuth ferrite BiFeO<sub>3</sub> structure in order to obtain a material with improved properties for photovoltaic applications. The synthesized materials were characterized by X-ray Diffraction (XRD) technique to determine the effective synthesis conditions for six undoped BiFeO<sub>3</sub> samples obtained at different calcination temperatures and quantified by Rietveld® refinement of diffraction patterns, finding homogeneous phase formation at 810 °C under laboratory conditions. The effective synthesis temperature allowed obtaining a stable perovskite-type material, doped with Na<sup>+</sup> and its structural characterization by XRD showed a structural modification in the unit cell with respect to BiFeO<sub>3</sub> due to the incorporation of sodium cation. The binding energies determined by X-ray photoelectron spectroscopy (XPS) confirmed the formation of the main crystalline phase and the insertion of Na<sup>+</sup> cations inside perovskite structure. The morphological characterization by scanning electron microscopy (SEM) of the synthesized material showed the formation of two stable morphologies: Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub> and Na<sub>0.02</sub>Bi<sub>0.98</sub>FeO<sub>3-δ</sub> as the predominant phase. The optical characterization by Raman spectroscopy allowed identifying variations in the vibration modes of the perovskite doped with respect to undoped bismuth ferrite. The variation of the optical bandgap was determined using the Tauc’s equation and the electrical characterization by solid state electrochemical impedance spectroscopy (SS-EIS) demonstrated an increase in electrical conductivity, at room temperature, by the Na<sup>+</sup> doped perovskite, proving an optimal behavior for its potential uses as a semiconductor. The results indicate that the current methodology is promising for the low-cost production of Na<sub>0.02</sub>Bi<sub>0.98</sub>FeO<sub>3-δ</sub> type perovskites for photovoltaic applications.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 166-179"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science for Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589299123000514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

This research describes the synthesis of the ferroelectric perovskite Na0.02Bi0.98FeO3-δ using a low-cost solid-state method starting from a bismuth ferrite BiFeO3 structure in order to obtain a material with improved properties for photovoltaic applications. The synthesized materials were characterized by X-ray Diffraction (XRD) technique to determine the effective synthesis conditions for six undoped BiFeO3 samples obtained at different calcination temperatures and quantified by Rietveld® refinement of diffraction patterns, finding homogeneous phase formation at 810 °C under laboratory conditions. The effective synthesis temperature allowed obtaining a stable perovskite-type material, doped with Na+ and its structural characterization by XRD showed a structural modification in the unit cell with respect to BiFeO3 due to the incorporation of sodium cation. The binding energies determined by X-ray photoelectron spectroscopy (XPS) confirmed the formation of the main crystalline phase and the insertion of Na+ cations inside perovskite structure. The morphological characterization by scanning electron microscopy (SEM) of the synthesized material showed the formation of two stable morphologies: Bi2Fe4O9 and Na0.02Bi0.98FeO3-δ as the predominant phase. The optical characterization by Raman spectroscopy allowed identifying variations in the vibration modes of the perovskite doped with respect to undoped bismuth ferrite. The variation of the optical bandgap was determined using the Tauc’s equation and the electrical characterization by solid state electrochemical impedance spectroscopy (SS-EIS) demonstrated an increase in electrical conductivity, at room temperature, by the Na+ doped perovskite, proving an optimal behavior for its potential uses as a semiconductor. The results indicate that the current methodology is promising for the low-cost production of Na0.02Bi0.98FeO3-δ type perovskites for photovoltaic applications.

Abstract Image

标准化BiFeO3制备Na0.02Bi0.98FeO3-δ
本研究描述了从铋铁氧体BiFeO3结构开始,使用低成本的固态方法合成铁电钙钛矿Na0.02Bi0.98FeO3-δ,以获得用于光伏应用的具有改进性能的材料。通过X射线衍射(XRD)技术对合成材料进行表征,以确定在不同煅烧温度下获得的六个未掺杂BiFeO3样品的有效合成条件,并通过Rietveld®衍射图细化进行量化,发现在实验室条件下在810°C下形成均匀相。有效的合成温度允许获得稳定的掺杂有Na+的钙钛矿型材料,并且通过XRD对其结构表征显示,由于钠阳离子的掺入,相对于BiFeO3,晶胞中存在结构修饰。通过X射线光电子能谱(XPS)测定的结合能证实了主晶相的形成和Na+阳离子插入钙钛矿结构中。通过扫描电子显微镜(SEM)对合成材料的形貌表征表明,形成了两种稳定的形貌:Bi2Fe4O9和Na0.02Bi0.98FeO3-δ为主相。拉曼光谱的光学表征允许识别掺杂的钙钛矿相对于未掺杂的铋铁氧体的振动模式的变化。光学带隙的变化是使用Tauc方程确定的,固态电化学阻抗谱(SS-EIS)的电学表征表明,在室温下,Na+掺杂的钙钛矿的电导率增加,证明了其作为半导体的潜在用途的最佳行为。结果表明,目前的方法有望低成本生产用于光伏应用的Na0.02Bi0.98FeO3-δ型钙钛矿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science for Energy Technologies
Materials Science for Energy Technologies Materials Science-Materials Science (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
41
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信