Adán de Jesús Bautista-Morantes, Carlos Ordulio Calderón-Carvajal, Jairo Alberto Gómez-Cuaspud, Enrique Vera-López
{"title":"Synthesis of Na0.02Bi0.98FeO3-δ through the standardized preparation of BiFeO3","authors":"Adán de Jesús Bautista-Morantes, Carlos Ordulio Calderón-Carvajal, Jairo Alberto Gómez-Cuaspud, Enrique Vera-López","doi":"10.1016/j.mset.2023.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>This research describes the synthesis of the ferroelectric perovskite Na<sub>0.02</sub>Bi<sub>0.98</sub>FeO<sub>3-δ</sub> using a low-cost solid-state method starting from a bismuth ferrite BiFeO<sub>3</sub> structure in order to obtain a material with improved properties for photovoltaic applications. The synthesized materials were characterized by X-ray Diffraction (XRD) technique to determine the effective synthesis conditions for six undoped BiFeO<sub>3</sub> samples obtained at different calcination temperatures and quantified by Rietveld® refinement of diffraction patterns, finding homogeneous phase formation at 810 °C under laboratory conditions. The effective synthesis temperature allowed obtaining a stable perovskite-type material, doped with Na<sup>+</sup> and its structural characterization by XRD showed a structural modification in the unit cell with respect to BiFeO<sub>3</sub> due to the incorporation of sodium cation. The binding energies determined by X-ray photoelectron spectroscopy (XPS) confirmed the formation of the main crystalline phase and the insertion of Na<sup>+</sup> cations inside perovskite structure. The morphological characterization by scanning electron microscopy (SEM) of the synthesized material showed the formation of two stable morphologies: Bi<sub>2</sub>Fe<sub>4</sub>O<sub>9</sub> and Na<sub>0.02</sub>Bi<sub>0.98</sub>FeO<sub>3-δ</sub> as the predominant phase. The optical characterization by Raman spectroscopy allowed identifying variations in the vibration modes of the perovskite doped with respect to undoped bismuth ferrite. The variation of the optical bandgap was determined using the Tauc’s equation and the electrical characterization by solid state electrochemical impedance spectroscopy (SS-EIS) demonstrated an increase in electrical conductivity, at room temperature, by the Na<sup>+</sup> doped perovskite, proving an optimal behavior for its potential uses as a semiconductor. The results indicate that the current methodology is promising for the low-cost production of Na<sub>0.02</sub>Bi<sub>0.98</sub>FeO<sub>3-δ</sub> type perovskites for photovoltaic applications.</p></div>","PeriodicalId":18283,"journal":{"name":"Materials Science for Energy Technologies","volume":"7 ","pages":"Pages 166-179"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science for Energy Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589299123000514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
This research describes the synthesis of the ferroelectric perovskite Na0.02Bi0.98FeO3-δ using a low-cost solid-state method starting from a bismuth ferrite BiFeO3 structure in order to obtain a material with improved properties for photovoltaic applications. The synthesized materials were characterized by X-ray Diffraction (XRD) technique to determine the effective synthesis conditions for six undoped BiFeO3 samples obtained at different calcination temperatures and quantified by Rietveld® refinement of diffraction patterns, finding homogeneous phase formation at 810 °C under laboratory conditions. The effective synthesis temperature allowed obtaining a stable perovskite-type material, doped with Na+ and its structural characterization by XRD showed a structural modification in the unit cell with respect to BiFeO3 due to the incorporation of sodium cation. The binding energies determined by X-ray photoelectron spectroscopy (XPS) confirmed the formation of the main crystalline phase and the insertion of Na+ cations inside perovskite structure. The morphological characterization by scanning electron microscopy (SEM) of the synthesized material showed the formation of two stable morphologies: Bi2Fe4O9 and Na0.02Bi0.98FeO3-δ as the predominant phase. The optical characterization by Raman spectroscopy allowed identifying variations in the vibration modes of the perovskite doped with respect to undoped bismuth ferrite. The variation of the optical bandgap was determined using the Tauc’s equation and the electrical characterization by solid state electrochemical impedance spectroscopy (SS-EIS) demonstrated an increase in electrical conductivity, at room temperature, by the Na+ doped perovskite, proving an optimal behavior for its potential uses as a semiconductor. The results indicate that the current methodology is promising for the low-cost production of Na0.02Bi0.98FeO3-δ type perovskites for photovoltaic applications.