{"title":"IoT systems with multi-tier, distributed intelligence: From architecture to prototype","authors":"Nada GabAllah , Ibrahim Farrag , Ramy Khalil , Hossam Sharara , Tamer ElBatt","doi":"10.1016/j.pmcj.2023.101818","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>In this paper, we propose an architecture, design and build a prototype of a novel IoT system with intelligence, distributed at multiple tiers including the network edge. Our proposed architecture hosts a modular, three-tier IoT system including the edge, gateway (fog) and cloud tiers. The proposed system relies on data acquired by edge devices to realize a distributed </span>machine learning model and achieve timely response at the edge using a lightweight machine learning model. In addition, it employs more sophisticated machine learning models at the higher fog and cloud tiers for wider-scope, long-term decision making. One of the prime objectives of the proposed system is reducing the volume of data transferred across tiers. This is attained through intelligent data filtering at the edge/gateway tiers to distill key events that avail the most relevant data points to higher-tier machine learning models at the gateway and cloud. This, in turn, reduces the outliers and the redundant data that may impact the gateway and cloud models and reduces the inter-tier </span>communications overhead<span>. To demonstrate the merits of our proposed system, we build a proof-of-concept prototype hosting the three tiers, using COTS components and supporting networking technologies. We demonstrate through extensive experiments the merits of the proposed system. A major finding is that our system is capable of achieving prediction performance comparable to the centralized machine learning baseline model, while reducing the inter-tier communications overhead by up to 80%.</span></p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119223000767","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose an architecture, design and build a prototype of a novel IoT system with intelligence, distributed at multiple tiers including the network edge. Our proposed architecture hosts a modular, three-tier IoT system including the edge, gateway (fog) and cloud tiers. The proposed system relies on data acquired by edge devices to realize a distributed machine learning model and achieve timely response at the edge using a lightweight machine learning model. In addition, it employs more sophisticated machine learning models at the higher fog and cloud tiers for wider-scope, long-term decision making. One of the prime objectives of the proposed system is reducing the volume of data transferred across tiers. This is attained through intelligent data filtering at the edge/gateway tiers to distill key events that avail the most relevant data points to higher-tier machine learning models at the gateway and cloud. This, in turn, reduces the outliers and the redundant data that may impact the gateway and cloud models and reduces the inter-tier communications overhead. To demonstrate the merits of our proposed system, we build a proof-of-concept prototype hosting the three tiers, using COTS components and supporting networking technologies. We demonstrate through extensive experiments the merits of the proposed system. A major finding is that our system is capable of achieving prediction performance comparable to the centralized machine learning baseline model, while reducing the inter-tier communications overhead by up to 80%.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.