Parameterized complexity of graph planarity with restricted cyclic orders

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Giuseppe Liotta , Ignaz Rutter , Alessandra Tappini
{"title":"Parameterized complexity of graph planarity with restricted cyclic orders","authors":"Giuseppe Liotta ,&nbsp;Ignaz Rutter ,&nbsp;Alessandra Tappini","doi":"10.1016/j.jcss.2023.02.007","DOIUrl":null,"url":null,"abstract":"<div><p>We study the complexity of testing whether a biconnected graph <span><math><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> is planar with the constraint that some cyclic orders of the edges incident to its vertices are allowed while some others are forbidden. The allowed cyclic orders are described by associating every vertex <em>v</em> of <em>G</em> with a set <span><math><mi>D</mi><mo>(</mo><mi>v</mi><mo>)</mo></math></span> of FPQ-trees. Let <em>tw</em> be the treewidth of <em>G</em> and let <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>max</mi></mrow></msub></math></span> be the maximum number of FPQ-trees per vertex. We show that the problem is FPT when parameterized by <span><math><mtext>tw</mtext><mo>+</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>max</mi></mrow></msub></math></span>, paraNP-hard when parameterized by <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>max</mi></mrow></msub></math></span>, and W[1]-hard when parameterized by <em>tw</em>. We also consider NodeTrix planar representations of clustered graphs, where clusters are adjacency matrices and inter-cluster edges are non-intersecting simple curves. We prove that NodeTrix planarity with fixed sides is FPT when parameterized by the size of clusters plus the treewidth of the graph obtained by collapsing clusters to single vertices, provided that this graph is biconnected.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"135 ","pages":"Pages 125-144"},"PeriodicalIF":1.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000023000284","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

We study the complexity of testing whether a biconnected graph G=(V,E) is planar with the constraint that some cyclic orders of the edges incident to its vertices are allowed while some others are forbidden. The allowed cyclic orders are described by associating every vertex v of G with a set D(v) of FPQ-trees. Let tw be the treewidth of G and let Dmax be the maximum number of FPQ-trees per vertex. We show that the problem is FPT when parameterized by tw+Dmax, paraNP-hard when parameterized by Dmax, and W[1]-hard when parameterized by tw. We also consider NodeTrix planar representations of clustered graphs, where clusters are adjacency matrices and inter-cluster edges are non-intersecting simple curves. We prove that NodeTrix planarity with fixed sides is FPT when parameterized by the size of clusters plus the treewidth of the graph obtained by collapsing clusters to single vertices, provided that this graph is biconnected.

受限循环阶图平面性的参数化复杂度
我们研究了检验双连通图G=(V,E)是否是平面图的复杂性,该图的约束条件是允许某些边的循环阶入射到其顶点,而禁止其他循环阶。通过将G的每个顶点v与FPQ树的集合D(v)相关联来描述允许的循环阶。设tw为G的树宽,设Dmax为每个顶点的FPQ树的最大数量。我们证明了当用tw+Dmax参数化时问题是FPT,当用Dmax参数化成paraNP-hard,当用tw参数化成W[1]-hard。我们还考虑了簇图的NodeTrix平面表示,其中簇是邻接矩阵,簇间边是不相交的简单曲线。我们证明了当通过簇的大小加上通过将簇折叠到单个顶点而获得的图的树宽来参数化时,具有固定边的NodeTrix平面性是FPT,前提是该图是双连通的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信