Francesco Giordano, Sara Milito, Maria Lucia Parrella
{"title":"Linear and nonlinear effects explaining the risk of Covid-19 infection: an empirical analysis on real data from the USA","authors":"Francesco Giordano, Sara Milito, Maria Lucia Parrella","doi":"10.1016/j.seps.2023.101732","DOIUrl":null,"url":null,"abstract":"<div><p>Using data from 3142 counties in the United States and a fully nonparametric variable selection approach for high-dimensional models, we identify predictor variables (among social, behavioral, economic, political, regulatory, demographic, and health characteristics) and discriminate against them between linear and nonlinear, depending on their effect on the risk of Severe Acute Respiratory Syndrome Coronavirus 2 infection. The data refer to the period from January to December 2020. We use a nonparametric and non-additive screening selection approach, the Derivative Empirical Likelihood Sure Independent Screening (DELSIS), in combination with a subsample technique. The results show that the relevant variables are different between counties with “large” and “small” populations. Furthermore, predictors such as mask wearing, age levels, ethnicity and poor health conditions are the main relevant variables for predicting the risk of infection, but with some differences over time.</p></div>","PeriodicalId":22033,"journal":{"name":"Socio-economic Planning Sciences","volume":"90 ","pages":"Article 101732"},"PeriodicalIF":6.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Socio-economic Planning Sciences","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038012123002446","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Using data from 3142 counties in the United States and a fully nonparametric variable selection approach for high-dimensional models, we identify predictor variables (among social, behavioral, economic, political, regulatory, demographic, and health characteristics) and discriminate against them between linear and nonlinear, depending on their effect on the risk of Severe Acute Respiratory Syndrome Coronavirus 2 infection. The data refer to the period from January to December 2020. We use a nonparametric and non-additive screening selection approach, the Derivative Empirical Likelihood Sure Independent Screening (DELSIS), in combination with a subsample technique. The results show that the relevant variables are different between counties with “large” and “small” populations. Furthermore, predictors such as mask wearing, age levels, ethnicity and poor health conditions are the main relevant variables for predicting the risk of infection, but with some differences over time.
期刊介绍:
Studies directed toward the more effective utilization of existing resources, e.g. mathematical programming models of health care delivery systems with relevance to more effective program design; systems analysis of fire outbreaks and its relevance to the location of fire stations; statistical analysis of the efficiency of a developing country economy or industry.
Studies relating to the interaction of various segments of society and technology, e.g. the effects of government health policies on the utilization and design of hospital facilities; the relationship between housing density and the demands on public transportation or other service facilities: patterns and implications of urban development and air or water pollution.
Studies devoted to the anticipations of and response to future needs for social, health and other human services, e.g. the relationship between industrial growth and the development of educational resources in affected areas; investigation of future demands for material and child health resources in a developing country; design of effective recycling in an urban setting.