Mixed-linker MOF-303 membranes for pervaporation

IF 4.9 Q1 ENGINEERING, CHEMICAL
Fang-Hsuan Hu , Li-Tang Chi , Guan-Bo Syu , Tsyr-Yan Yu , Ming-Pei Lin , Jiun-Jen Chen , Wen-Yueh Yu , Dun-Yen Kang
{"title":"Mixed-linker MOF-303 membranes for pervaporation","authors":"Fang-Hsuan Hu ,&nbsp;Li-Tang Chi ,&nbsp;Guan-Bo Syu ,&nbsp;Tsyr-Yan Yu ,&nbsp;Ming-Pei Lin ,&nbsp;Jiun-Jen Chen ,&nbsp;Wen-Yueh Yu ,&nbsp;Dun-Yen Kang","doi":"10.1016/j.memlet.2023.100053","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-organic frameworks (MOFs) hold great promise as porous materials for pervaporation applications. However, the exploration of MOF membranes in this field is still in its early stages. One of the main challenges is the relatively low mass flux and stability of pure MOF membranes compared to other materials used in pervaporation. In this study, we propose a novel approach to enhance the separation performance of MOF membranes for water and ethanol separation. Our strategy involves incorporating the 2,5-thiophenedicarboxylic acid (TDC) linker into the MOF-303 structure, partially replacing the 3,5-pyrazoledicarboxylic acid (PDC) linker. The goal is to increase the aperture size of the microporous channels in the pristine MOF-303 membrane, thereby improving the mass flux. X-ray diffraction characterization, combined with Rietveld refinement, confirmed that the partial substitution of PDC with TDC resulted in an increased pore-limiting diameter (PLD) of MOF-303. For instance, the pristine MOF-303 exhibited a PLD of 5.78 Å, while MOF-303(70/30) with 70% TDC replacement displayed a PLD of 6.02 Å. To fabricate the mixed-linker MOF-303 membranes, we utilized a seeded growth method, which yielded membranes with dense layers, as confirmed by scanning electron microscopy and air permeation characterization. The prepared membranes were subjected to pervaporation tests to evaluate their performance in separating 90 wt.% ethanol at 60 °C. The pristine MOF-303 membrane exhibited notable separation capabilities, with an average flux of 0.071 kg·m<sup>−2</sup>·hr<sup>−1</sup> and a water/ethanol separation factor of 5371. Surpassing the unmodified MOF-303, the mixed-linker MOF-303(50/50) membrane demonstrated improved mass flux and water/ethanol separation factor. Specifically, the MOF-303(50/50) membrane displayed an average flux of 0.092 kg·m<sup>−2</sup>·hr<sup>−1</sup> and a water/ethanol separation factor of 8500. Importantly, the unmodified MOF-303 membrane exhibited instability during prolonged pervaporation operation, whereas the mixed-linker MOF-303(50/50) membrane effectively addressed this issue. Further analysis using <em>in situ</em> Fourier transform infrared spectroscopy and water adsorption characterization revealed that MOF-303(50/50) possessed a strong affinity for water, comparable to the pristine MOF-303. Overall, our study highlights the potential of the mixed-linker approach to optimize the separation performance and stability of MOF-based membranes for pervaporation application.</p></div>","PeriodicalId":100805,"journal":{"name":"Journal of Membrane Science Letters","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277242122300017X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 4

Abstract

Metal-organic frameworks (MOFs) hold great promise as porous materials for pervaporation applications. However, the exploration of MOF membranes in this field is still in its early stages. One of the main challenges is the relatively low mass flux and stability of pure MOF membranes compared to other materials used in pervaporation. In this study, we propose a novel approach to enhance the separation performance of MOF membranes for water and ethanol separation. Our strategy involves incorporating the 2,5-thiophenedicarboxylic acid (TDC) linker into the MOF-303 structure, partially replacing the 3,5-pyrazoledicarboxylic acid (PDC) linker. The goal is to increase the aperture size of the microporous channels in the pristine MOF-303 membrane, thereby improving the mass flux. X-ray diffraction characterization, combined with Rietveld refinement, confirmed that the partial substitution of PDC with TDC resulted in an increased pore-limiting diameter (PLD) of MOF-303. For instance, the pristine MOF-303 exhibited a PLD of 5.78 Å, while MOF-303(70/30) with 70% TDC replacement displayed a PLD of 6.02 Å. To fabricate the mixed-linker MOF-303 membranes, we utilized a seeded growth method, which yielded membranes with dense layers, as confirmed by scanning electron microscopy and air permeation characterization. The prepared membranes were subjected to pervaporation tests to evaluate their performance in separating 90 wt.% ethanol at 60 °C. The pristine MOF-303 membrane exhibited notable separation capabilities, with an average flux of 0.071 kg·m−2·hr−1 and a water/ethanol separation factor of 5371. Surpassing the unmodified MOF-303, the mixed-linker MOF-303(50/50) membrane demonstrated improved mass flux and water/ethanol separation factor. Specifically, the MOF-303(50/50) membrane displayed an average flux of 0.092 kg·m−2·hr−1 and a water/ethanol separation factor of 8500. Importantly, the unmodified MOF-303 membrane exhibited instability during prolonged pervaporation operation, whereas the mixed-linker MOF-303(50/50) membrane effectively addressed this issue. Further analysis using in situ Fourier transform infrared spectroscopy and water adsorption characterization revealed that MOF-303(50/50) possessed a strong affinity for water, comparable to the pristine MOF-303. Overall, our study highlights the potential of the mixed-linker approach to optimize the separation performance and stability of MOF-based membranes for pervaporation application.

Abstract Image

混合连接MOF-303膜渗透蒸发
金属有机框架(MOFs)作为渗透蒸发应用的多孔材料具有很大的前景。然而,MOF膜在该领域的探索仍处于早期阶段。主要挑战之一是与渗透蒸发中使用的其他材料相比,纯MOF膜的质量通量和稳定性相对较低。在本研究中,我们提出了一种新的方法来提高MOF膜在水和乙醇分离中的分离性能。我们的策略包括将2,5-噻吩二羧酸(TDC)连接体结合到MOF-303结构中,部分取代3,5-吡唑二羧酸(PDC)连接体。目标是增加原始MOF-303膜中微孔通道的孔径大小,从而提高质量通量。X射线衍射表征,结合Rietveld细化,证实PDC与TDC的部分取代导致MOF-303的孔极限直径(PLD)增加。例如,原始MOF-303的PLD为5.78Å,而具有70%TDC置换的MOF-303(70/30)的PLD则为6.02Å。为了制备混合连接体MOF-303膜,我们使用了种子生长方法,该方法产生了具有致密层的膜,如扫描电子显微镜和空气渗透表征所证实的。对制备的膜进行渗透蒸发测试,以评估它们在分离90重量%中的性能60°C下的乙醇。原始MOF-303膜表现出显著的分离能力,平均通量为0.071 kg·m−2·hr−1,水/乙醇分离因子为5371。超过未改性的MOF-303,混合连接体MOF-303(50/50)膜表现出改进的质量通量和水/乙醇分离因子。具体而言,MOF-303(50/50)膜的平均通量为0.092 kg·m−2·hr−1,水/乙醇分离系数为8500。重要的是,未改性的MOF-303膜在长时间的渗透蒸发操作中表现出不稳定性,而混合连接体MOF-303(50/50)膜有效地解决了这个问题。使用原位傅立叶变换红外光谱和水吸附表征的进一步分析表明,MOF-303(50/50)对水具有很强的亲和力,与原始MOF-303相当。总之,我们的研究强调了混合连接体方法在优化渗透蒸发应用中基于MOF的膜的分离性能和稳定性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信