Anisotropic solution growth of 1D/2D N-rich carbon

Zongge Li , Chenwei Wang , Anuj Kumar , Hongrui Jia , Yin Jia , Huifang Li , Lu Bai , Guoxin Zhang , Xiaoming Sun
{"title":"Anisotropic solution growth of 1D/2D N-rich carbon","authors":"Zongge Li ,&nbsp;Chenwei Wang ,&nbsp;Anuj Kumar ,&nbsp;Hongrui Jia ,&nbsp;Yin Jia ,&nbsp;Huifang Li ,&nbsp;Lu Bai ,&nbsp;Guoxin Zhang ,&nbsp;Xiaoming Sun","doi":"10.1016/j.apmate.2023.100138","DOIUrl":null,"url":null,"abstract":"<div><p>Despite the fact that low-dimensional carbons (LDCs, 1D/2D) materials are very interesting due to their intriguing electrical properties, we still attempt to enrich them by high N-content in order to enjoy their electro-applications. We here report a template-free synthesis of 1D/2D LDC with high N content (&gt;40 ​at%) and tunable aspect ratios from molecular formamide (FA). The 1D/2D LDC is in polyaminoimidazole as confirmed by pair distribution function analysis, and 1D growth mode can be altered to 2D by simply adding a 2D-guiding molecule of melamine. Electrochemical properties of the LDC can be finely tuned by adjusting the solvothermal temperature and melamine dosage. It is revealed that the optimal 2D LDC delivers superior O<sub>2</sub>-to-H<sub>2</sub>O<sub>2</sub> yield (687.2 ​mmol·g<sup>−1</sup>⋅h<sup>−1</sup>) and Faradic efficiency (87.5%). Considering the heavy N content and high adjustability of aspect ratio, the FA-derived LDCs potentially open new synthesis routes for structural carbon materials for broad electrochemical applications.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"2 4","pages":"Article 100138"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X23000301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Despite the fact that low-dimensional carbons (LDCs, 1D/2D) materials are very interesting due to their intriguing electrical properties, we still attempt to enrich them by high N-content in order to enjoy their electro-applications. We here report a template-free synthesis of 1D/2D LDC with high N content (>40 ​at%) and tunable aspect ratios from molecular formamide (FA). The 1D/2D LDC is in polyaminoimidazole as confirmed by pair distribution function analysis, and 1D growth mode can be altered to 2D by simply adding a 2D-guiding molecule of melamine. Electrochemical properties of the LDC can be finely tuned by adjusting the solvothermal temperature and melamine dosage. It is revealed that the optimal 2D LDC delivers superior O2-to-H2O2 yield (687.2 ​mmol·g−1⋅h−1) and Faradic efficiency (87.5%). Considering the heavy N content and high adjustability of aspect ratio, the FA-derived LDCs potentially open new synthesis routes for structural carbon materials for broad electrochemical applications.

一维/二维富氮碳的各向异性溶液生长
尽管低维碳(LDCs,1D/2D)材料由于其有趣的电学性质而非常有趣,但我们仍然试图通过高N含量来丰富它们,以享受它们的电学应用。我们在此报道了具有高N含量(>;40)的1D/2D LDC的无模板合成​at%)和来自分子甲酰胺(FA)的可调长径比。通过对分布函数分析证实,1D/2D LDC在聚氨基咪唑中,并且可以通过简单地添加三聚氰胺的2D引导分子将1D生长模式改变为2D。LDC的电化学性能可以通过调节溶剂热温度和三聚氰胺的用量来微调。结果表明,最佳2D LDC可提供卓越的O2-H2O2产率(687.2​mmol·g−1·h−1)和法拉第效率(87.5%)。考虑到高N含量和高纵横比可调性,FA衍生的LDCs为结构碳材料的广泛电化学应用开辟了新的合成途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信