A Big Data Framework to Address Building Sum Insured Misestimation

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Callum Roberts, Adrian Gepp, James Todd
{"title":"A Big Data Framework to Address Building Sum Insured Misestimation","authors":"Callum Roberts,&nbsp;Adrian Gepp,&nbsp;James Todd","doi":"10.1016/j.bdr.2023.100396","DOIUrl":null,"url":null,"abstract":"<div><p><span>In the insurance industry, the accumulation of complex problems and volume of data creates a large scope for actuaries to apply big data techniques to investigate and provide unique solutions for millions of policyholders. With much of the actuarial focus on traditional problems like price optimisation or improving claims management, there is an opportunity to tackle other known product inefficiencies with a data-driven approach. The purpose of this paper is to build a framework that exploits </span>big data technologies<span> to measure and explain Australian policyholder Sum Insured Misestimation (SIM). Big data clustering and dimension reduction techniques are leveraged to measure SIM for a national home insurance portfolio. We then design predictive and prescriptive models to explore the relationship between socioeconomic and demographic factors with SIM. Real-world results from a national home insurance portfolio provide actionable business insight on SIM and facilitate solutions for stakeholders, being government and insurers.</span></p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579623000291","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the insurance industry, the accumulation of complex problems and volume of data creates a large scope for actuaries to apply big data techniques to investigate and provide unique solutions for millions of policyholders. With much of the actuarial focus on traditional problems like price optimisation or improving claims management, there is an opportunity to tackle other known product inefficiencies with a data-driven approach. The purpose of this paper is to build a framework that exploits big data technologies to measure and explain Australian policyholder Sum Insured Misestimation (SIM). Big data clustering and dimension reduction techniques are leveraged to measure SIM for a national home insurance portfolio. We then design predictive and prescriptive models to explore the relationship between socioeconomic and demographic factors with SIM. Real-world results from a national home insurance portfolio provide actionable business insight on SIM and facilitate solutions for stakeholders, being government and insurers.

解决建筑保额误估的大数据框架
在保险业,复杂问题和大量数据的积累为精算师应用大数据技术进行调查创造了巨大的空间,并为数百万投保人提供了独特的解决方案。由于精算师主要关注价格优化或改进索赔管理等传统问题,因此有机会通过数据驱动的方法解决其他已知的产品效率低下问题。本文的目的是建立一个利用大数据技术来衡量和解释澳大利亚投保人投保金额估计错误(SIM)的框架。利用大数据聚类和降维技术来衡量全国家庭保险投资组合的SIM。然后,我们设计了预测和规定模型,以探索社会经济和人口因素与SIM之间的关系。国家家庭保险投资组合的真实世界结果为SIM提供了可操作的商业见解,并为政府和保险公司等利益相关者提供了解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信