{"title":"Interpersonal trust modelling through multi-agent Reinforcement Learning","authors":"Vincent Frey, Julian Martinez","doi":"10.1016/j.cogsys.2023.101157","DOIUrl":null,"url":null,"abstract":"<div><p><span>Many existing approaches to model and compute trust in a quantitative way rely on ranking, rating or assessments of agents by other agents. Even though reputation is related with trust, it does not capture all its characteristics. In parallel, many works in neuroscience<span> shows evidence about interpersonal trust being an associative learning process encoded in the human brain. Inspired by other subjects such as Cognitive Processing/Dopamine, where </span></span>Reinforcement Learning<span> algorithms have served to model those phenomena, we propose a model for trust dynamics based on a multi-agent RL algorithm. We corroborate some trust concepts developed in social sciences within a quantitative framework. We do also propose and assess some metrics for a better understanding about the relation between the trust behaviour and the performance of the agents. Finally, we show that Trust, as described by our proposal, can serve to accelerate learning.</span></p></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"83 ","pages":"Article 101157"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389041723000918","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Many existing approaches to model and compute trust in a quantitative way rely on ranking, rating or assessments of agents by other agents. Even though reputation is related with trust, it does not capture all its characteristics. In parallel, many works in neuroscience shows evidence about interpersonal trust being an associative learning process encoded in the human brain. Inspired by other subjects such as Cognitive Processing/Dopamine, where Reinforcement Learning algorithms have served to model those phenomena, we propose a model for trust dynamics based on a multi-agent RL algorithm. We corroborate some trust concepts developed in social sciences within a quantitative framework. We do also propose and assess some metrics for a better understanding about the relation between the trust behaviour and the performance of the agents. Finally, we show that Trust, as described by our proposal, can serve to accelerate learning.
期刊介绍:
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.