Mechanical energy absorption of architecturally interlocked petal-schwarzites

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Leonardo V. Bastos , Rushikesh S. Ambekar , Chandra S. Tiwary , Douglas S. Galvao , Cristiano F. Woellner
{"title":"Mechanical energy absorption of architecturally interlocked petal-schwarzites","authors":"Leonardo V. Bastos ,&nbsp;Rushikesh S. Ambekar ,&nbsp;Chandra S. Tiwary ,&nbsp;Douglas S. Galvao ,&nbsp;Cristiano F. Woellner","doi":"10.1016/j.cartre.2023.100299","DOIUrl":null,"url":null,"abstract":"<div><p>We carried out fully atomistic reactive molecular dynamics simulations to study the mechanical behavior of six newly proposed hybrid schwarzite-based structures (interlocked petal-schwarzites). Schwarzites are carbon crystalline nanostructures with negative Gaussian curvature created by mapping a TPMS (Triply Periodic Minimal Surface) with carbon rings containing six to eight atoms. Our simulations have shown that petal-schwarzite structures can withstand uni-axial compressive stress up to the order of GPa and can be compressed past 50 percent strain without structural collapse. Our most resistant hierarchical structure has a calculated compressive strength of 260 GPa and specific energy absorption (SEA) of 45.95 MJ/kg, while possessing a mass density of only 685 kg/m<sup>3</sup>. These results show that these structures could be excellent lightweight materials for applications that require mechanical energy absorption.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056923000548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We carried out fully atomistic reactive molecular dynamics simulations to study the mechanical behavior of six newly proposed hybrid schwarzite-based structures (interlocked petal-schwarzites). Schwarzites are carbon crystalline nanostructures with negative Gaussian curvature created by mapping a TPMS (Triply Periodic Minimal Surface) with carbon rings containing six to eight atoms. Our simulations have shown that petal-schwarzite structures can withstand uni-axial compressive stress up to the order of GPa and can be compressed past 50 percent strain without structural collapse. Our most resistant hierarchical structure has a calculated compressive strength of 260 GPa and specific energy absorption (SEA) of 45.95 MJ/kg, while possessing a mass density of only 685 kg/m3. These results show that these structures could be excellent lightweight materials for applications that require mechanical energy absorption.

建筑互锁花瓣schwarzites的机械能吸收
我们进行了全原子反应分子动力学模拟,以研究六种新提出的基于杂化schwarzite的结构(互锁花瓣schwarzites)的力学行为。Schwarzites是一种具有负高斯曲率的碳晶体纳米结构,通过绘制含有六到八个原子的碳环的TPMS(三周期最小表面)而产生。我们的模拟表明,花瓣状schwarzite结构可以承受高达GPa量级的单轴压缩应力,并且可以压缩超过50%的应变而不会发生结构坍塌。我们最具抵抗力的分级结构的计算抗压强度为260GPa,比能量吸收(SEA)为45.95MJ/kg,而质量密度仅为685kg/m3。这些结果表明,对于需要机械能量吸收的应用,这些结构可能是极好的轻质材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信