{"title":"An effective decomposition theorem for Schubert varieties","authors":"Francesca Cioffi, Davide Franco, Carmine Sessa","doi":"10.1016/j.jsc.2023.102238","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717123000524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
舒伯特变换的一个有效分解定理
给定Grassmannian Gk(Cl)中包含的Schubert变种S,我们展示了如何获得关于通过将分解定理应用于奇点π:S~的适当分辨率而给出的导出的前推Rπ-QS~的直接和的进一步信息→S.作为副产品,获得了庞加莱多项式表达式以及计算这些表达式中未知项的算法,该算法表明直接求和的实际数量恰好小于分解的支持数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。