Controllable synthesis of CdS nanospheres photoelectrode for photoelectrochemical water splitting

Yingpeng Xie , Yi Sun , Renzheng Jiang , Junhua Chang , Yongqiang Yang , Lili Zhang , Chao Zhen , Fei Han , Enlei Zhang , Guosheng Wang
{"title":"Controllable synthesis of CdS nanospheres photoelectrode for photoelectrochemical water splitting","authors":"Yingpeng Xie ,&nbsp;Yi Sun ,&nbsp;Renzheng Jiang ,&nbsp;Junhua Chang ,&nbsp;Yongqiang Yang ,&nbsp;Lili Zhang ,&nbsp;Chao Zhen ,&nbsp;Fei Han ,&nbsp;Enlei Zhang ,&nbsp;Guosheng Wang","doi":"10.1016/j.recm.2023.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>CdS nanospheres were grown on indium tin oxide (ITO) substrate using a hydrothermal method. The crystal structure, morphology and electronic structure of the samples synthesized were characterized in detail. The results confirm that the crystallinity, size, crystal defects of the CdS nanospheres and the film thickness of CdS photoelectrodes can be tuned by varying the precursor Cd<sup>2+</sup> concentration. Combined with charge transfer dynamics analysis, it can be found that proper particle size and film thickness, as well as fewer defects, will result in better charge separation efficiency of the prepared CdS/ITO photoelectrodes, thereby exhibiting better photoelectrochemical performance for water splitting. The optimized CdS/ITO photoelectrode synthesized with a Cd<sup>2+</sup> concentration of 0.14 mol·<em>L</em><sup>−1</sup> gave a photocurrent density of 5.10 mA·cm<sup>−2</sup> at potential of 1.23 V versus the reversible hydrogen electrode (RHE), under a simulated solar illumination of 100 mW·cm<sup>−2</sup>.</p></div>","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"3 1","pages":"Pages 38-45"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Chemicals and Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772443323000521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

CdS nanospheres were grown on indium tin oxide (ITO) substrate using a hydrothermal method. The crystal structure, morphology and electronic structure of the samples synthesized were characterized in detail. The results confirm that the crystallinity, size, crystal defects of the CdS nanospheres and the film thickness of CdS photoelectrodes can be tuned by varying the precursor Cd2+ concentration. Combined with charge transfer dynamics analysis, it can be found that proper particle size and film thickness, as well as fewer defects, will result in better charge separation efficiency of the prepared CdS/ITO photoelectrodes, thereby exhibiting better photoelectrochemical performance for water splitting. The optimized CdS/ITO photoelectrode synthesized with a Cd2+ concentration of 0.14 mol·L−1 gave a photocurrent density of 5.10 mA·cm−2 at potential of 1.23 V versus the reversible hydrogen electrode (RHE), under a simulated solar illumination of 100 mW·cm−2.

可控合成用于光电化学水分解的CdS纳米球光电极
采用水热法在氧化铟锡(ITO)衬底上生长了CdS纳米球。对合成的样品的晶体结构、形貌和电子结构进行了详细的表征。结果证实,CdS纳米球的结晶度、尺寸、晶体缺陷和CdS光电极的膜厚度可以通过改变前体Cd2+浓度来调节。结合电荷转移动力学分析可以发现,适当的颗粒尺寸和膜厚度以及较少的缺陷将使所制备的CdS/ITO光电极具有更好的电荷分离效率,从而表现出更好的水分解光电化学性能。在100 mW·cm−2的模拟太阳光照下,合成了Cd2+浓度为0.14 mol·L−1的优化CdS/ITO光电极,在1.23V的电势下,与可逆氢电极(RHE)相比,其光电流密度为5.10 mA·cm−2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信