Anhan Liu , Zhan Hou , Fan Wu , Xiaowei Zhang , Shingo Nakamura , Tomomi Irita , Akinari Sugiyama , Takashi Nishikawa , He Tian
{"title":"Evaluation of etching performance of single etching gases for high-κ films","authors":"Anhan Liu , Zhan Hou , Fan Wu , Xiaowei Zhang , Shingo Nakamura , Tomomi Irita , Akinari Sugiyama , Takashi Nishikawa , He Tian","doi":"10.1016/j.mee.2023.112087","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The continuous advancement of CMOS technology has put forward higher requirements for </span>dielectric<span> etching processes. However, conventional mixed etching gases fail to elucidate the contribution of each gas. The role of single etching gas in the etching process remains elusive. In this work, we investigated the etching characteristics of high-κ thin films using a variety of single fluorine-based or chlorine-based gases. We further analyzed the underlying reasons for the observed differences in etching behaviors with different gases. Our findings demonstrate that BCl</span></span><sub>3</sub> is the optimal single etching gas for HfO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> films with a fast and stable etching rate, while the films etched by Cl<sub>2</sub>, BCl<sub>3</sub>, CF<sub>4</sub>, CHF<sub>3</sub>, and C<sub>4</sub>F<sub>8</sub> exhibited varying degrees of etching residuals. The outstanding etching performance of BCl<sub>3</sub><span> is attributed to the interaction between physical bombardment and chemical reactions. Furthermore, we propose a set of evaluation methods for etching residues and mechanisms. These results provide valuable insights into the etching process and facilitate the selection of appropriate etching gases for high-κ films in advanced semiconductor process nodes.</span></p></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931723001521","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The continuous advancement of CMOS technology has put forward higher requirements for dielectric etching processes. However, conventional mixed etching gases fail to elucidate the contribution of each gas. The role of single etching gas in the etching process remains elusive. In this work, we investigated the etching characteristics of high-κ thin films using a variety of single fluorine-based or chlorine-based gases. We further analyzed the underlying reasons for the observed differences in etching behaviors with different gases. Our findings demonstrate that BCl3 is the optimal single etching gas for HfO2 and Al2O3 films with a fast and stable etching rate, while the films etched by Cl2, BCl3, CF4, CHF3, and C4F8 exhibited varying degrees of etching residuals. The outstanding etching performance of BCl3 is attributed to the interaction between physical bombardment and chemical reactions. Furthermore, we propose a set of evaluation methods for etching residues and mechanisms. These results provide valuable insights into the etching process and facilitate the selection of appropriate etching gases for high-κ films in advanced semiconductor process nodes.
期刊介绍:
Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.