Ashwin Jacob , Jari J.H. de Kroon , Diptapriyo Majumdar , Venkatesh Raman
{"title":"Deletion to scattered graph classes I - Case of finite number of graph classes","authors":"Ashwin Jacob , Jari J.H. de Kroon , Diptapriyo Majumdar , Venkatesh Raman","doi":"10.1016/j.jcss.2023.05.005","DOIUrl":null,"url":null,"abstract":"<div><p>Graph-deletion problems involve deleting a small number of vertices so that the resulting graph belong to a given hereditary graph class. We initiate a study of a natural variation of the problem of deletion to <em>scattered graph classes</em>. We want to delete at most <em>k</em><span> vertices so that each connected component of the resulting graph belongs to one of the constant number of graph classes. As our main result, we show that this problem is non-uniformly fixed-parameter tractable (FPT) when the deletion problem corresponding to each of the constant number of graph classes is known to be FPT and the properties that a graph belongs to these classes are expressible in Counting Monodic Second Order (CMSO) logic. While this is shown using some black box theorems in parameterized complexity, we give a faster FPT algorithm when each of the graph classes has a finite forbidden set.</span></p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"138 ","pages":"Article 103460"},"PeriodicalIF":1.1000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000023000600","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0
Abstract
Graph-deletion problems involve deleting a small number of vertices so that the resulting graph belong to a given hereditary graph class. We initiate a study of a natural variation of the problem of deletion to scattered graph classes. We want to delete at most k vertices so that each connected component of the resulting graph belongs to one of the constant number of graph classes. As our main result, we show that this problem is non-uniformly fixed-parameter tractable (FPT) when the deletion problem corresponding to each of the constant number of graph classes is known to be FPT and the properties that a graph belongs to these classes are expressible in Counting Monodic Second Order (CMSO) logic. While this is shown using some black box theorems in parameterized complexity, we give a faster FPT algorithm when each of the graph classes has a finite forbidden set.
期刊介绍:
The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions.
Research areas include traditional subjects such as:
• Theory of algorithms and computability
• Formal languages
• Automata theory
Contemporary subjects such as:
• Complexity theory
• Algorithmic Complexity
• Parallel & distributed computing
• Computer networks
• Neural networks
• Computational learning theory
• Database theory & practice
• Computer modeling of complex systems
• Security and Privacy.