Interaction graphs of isomorphic automata networks I: Complete digraph and minimum in-degree

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Florian Bridoux , Kévin Perrot , Aymeric Picard Marchetto , Adrien Richard
{"title":"Interaction graphs of isomorphic automata networks I: Complete digraph and minimum in-degree","authors":"Florian Bridoux ,&nbsp;Kévin Perrot ,&nbsp;Aymeric Picard Marchetto ,&nbsp;Adrien Richard","doi":"10.1016/j.jcss.2023.05.003","DOIUrl":null,"url":null,"abstract":"<div><p><span>An automata network with </span><em>n</em> components over a finite alphabet <em>Q</em> of size <em>q</em><span> is a discrete dynamical system described by the successive iterations of a function </span><span><math><mi>f</mi><mo>:</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. In most applications, the main parameter is the interaction graph of <em>f</em><span>: the digraph with vertex set </span><span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span> that contains an arc from <em>j</em> to <em>i</em> if <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> depends on input <em>j</em>. What can be said on the set <span><math><mi>G</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> of the interaction graphs of the automata networks isomorphic to <em>f</em>? It seems that this simple question has never been studied. Here, we report some basic facts. First, we prove that if <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span> or <span><math><mi>q</mi><mo>≥</mo><mn>3</mn></math></span> and <em>f</em> is neither the identity nor constant, then <span><math><mi>G</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> always contains the complete digraph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, with <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> arcs. Then, we prove that <span><math><mi>G</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> always contains a digraph whose minimum in-degree is bounded as a function of <em>q</em>. Hence, if <em>n</em> is large with respect to <em>q</em>, then <span><math><mi>G</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> cannot only contain <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. However, we prove that <span><math><mi>G</mi><mo>(</mo><mi>f</mi><mo>)</mo></math></span> can contain only dense digraphs, with at least <span><math><mo>⌊</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn><mo>⌋</mo></math></span> arcs.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"138 ","pages":"Article 103458"},"PeriodicalIF":1.1000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000023000570","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

An automata network with n components over a finite alphabet Q of size q is a discrete dynamical system described by the successive iterations of a function f:QnQn. In most applications, the main parameter is the interaction graph of f: the digraph with vertex set [n] that contains an arc from j to i if fi depends on input j. What can be said on the set G(f) of the interaction graphs of the automata networks isomorphic to f? It seems that this simple question has never been studied. Here, we report some basic facts. First, we prove that if n5 or q3 and f is neither the identity nor constant, then G(f) always contains the complete digraph Kn, with n2 arcs. Then, we prove that G(f) always contains a digraph whose minimum in-degree is bounded as a function of q. Hence, if n is large with respect to q, then G(f) cannot only contain Kn. However, we prove that G(f) can contain only dense digraphs, with at least n2/4 arcs.

同构自动机网络的交互图I:完全有向图和最小in度
在大小为Q的有限字母表Q上具有n个分量的自动机网络是由函数f:Qn的连续迭代描述的离散动力系统→问题。在大多数应用中,主要参数是f的交互图:如果fi依赖于输入j,则具有顶点集[n]的有向图包含从j到i的弧。同构于f的自动机网络的交互图的集合G(f)上可以说什么?这个简单的问题似乎从未被研究过。在这里,我们报告一些基本事实。首先,我们证明了如果n≥5或q≥3且f既不是恒等式也不是常数,则G(f)总是包含具有n2个弧的完全有向图Kn。然后,我们证明了G(f)总是包含一个有向图,其最小度作为q的函数是有界的。因此,如果n相对于q很大,那么G(f(f)不能只包含Kn。然而,我们证明G(f。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信