{"title":"Balanced allocation on hypergraphs","authors":"Catherine Greenhill , Bernard Mans , Ali Pourmiri","doi":"10.1016/j.jcss.2023.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a variation of balls-into-bins which randomly allocates <em>m</em> balls into <em>n</em> bins. Following Godfrey's model (SODA, 2008), we assume that each ball <em>t</em>, <span><math><mn>1</mn><mo>⩽</mo><mi>t</mi><mo>⩽</mo><mi>m</mi></math></span>, comes with a hypergraph <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup><mo>=</mo><mo>{</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></msub><mo>}</mo></math></span>, and each edge <span><math><mi>B</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup></math></span> contains at least a logarithmic number of bins. Given <span><math><mi>d</mi><mo>⩾</mo><mn>2</mn></math></span>, our <em>d</em>-choice algorithm chooses an edge <span><math><mi>B</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup></math></span>, uniformly at random, and then chooses a set <em>D</em> of <em>d</em> random bins from the selected edge <em>B</em>. The ball is allocated to a least-loaded bin from <em>D</em>. We prove that if the hypergraphs <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></msup></math></span> satisfy a <em>balancedness</em> condition and have low <em>pair visibility</em>, then after allocating <span><math><mi>m</mi><mo>=</mo><mi>Θ</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> balls, the maximum load of any bin is at most <span><math><msub><mrow><mi>log</mi></mrow><mrow><mi>d</mi></mrow></msub><mo></mo><mi>log</mi><mo></mo><mi>n</mi><mo>+</mo><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>, with high probability. Moreover, we establish a lower bound for the maximum load attained by the balanced allocation for a sequence of hypergraphs in terms of pair visibility.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"138 ","pages":"Article 103459"},"PeriodicalIF":1.1000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000023000582","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1
Abstract
We consider a variation of balls-into-bins which randomly allocates m balls into n bins. Following Godfrey's model (SODA, 2008), we assume that each ball t, , comes with a hypergraph , and each edge contains at least a logarithmic number of bins. Given , our d-choice algorithm chooses an edge , uniformly at random, and then chooses a set D of d random bins from the selected edge B. The ball is allocated to a least-loaded bin from D. We prove that if the hypergraphs satisfy a balancedness condition and have low pair visibility, then after allocating balls, the maximum load of any bin is at most , with high probability. Moreover, we establish a lower bound for the maximum load attained by the balanced allocation for a sequence of hypergraphs in terms of pair visibility.
期刊介绍:
The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions.
Research areas include traditional subjects such as:
• Theory of algorithms and computability
• Formal languages
• Automata theory
Contemporary subjects such as:
• Complexity theory
• Algorithmic Complexity
• Parallel & distributed computing
• Computer networks
• Neural networks
• Computational learning theory
• Database theory & practice
• Computer modeling of complex systems
• Security and Privacy.