Balanced allocation on hypergraphs

IF 1.1 3区 计算机科学 Q1 BUSINESS, FINANCE
Catherine Greenhill , Bernard Mans , Ali Pourmiri
{"title":"Balanced allocation on hypergraphs","authors":"Catherine Greenhill ,&nbsp;Bernard Mans ,&nbsp;Ali Pourmiri","doi":"10.1016/j.jcss.2023.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a variation of balls-into-bins which randomly allocates <em>m</em> balls into <em>n</em> bins. Following Godfrey's model (SODA, 2008), we assume that each ball <em>t</em>, <span><math><mn>1</mn><mo>⩽</mo><mi>t</mi><mo>⩽</mo><mi>m</mi></math></span>, comes with a hypergraph <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup><mo>=</mo><mo>{</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></msub><mo>}</mo></math></span>, and each edge <span><math><mi>B</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup></math></span> contains at least a logarithmic number of bins. Given <span><math><mi>d</mi><mo>⩾</mo><mn>2</mn></math></span>, our <em>d</em>-choice algorithm chooses an edge <span><math><mi>B</mi><mo>∈</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></msup></math></span>, uniformly at random, and then chooses a set <em>D</em> of <em>d</em> random bins from the selected edge <em>B</em>. The ball is allocated to a least-loaded bin from <em>D</em>. We prove that if the hypergraphs <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></msup><mo>,</mo><mo>…</mo><mo>,</mo><msup><mrow><mi>H</mi></mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></msup></math></span> satisfy a <em>balancedness</em> condition and have low <em>pair visibility</em>, then after allocating <span><math><mi>m</mi><mo>=</mo><mi>Θ</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> balls, the maximum load of any bin is at most <span><math><msub><mrow><mi>log</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>+</mo><mi>O</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>, with high probability. Moreover, we establish a lower bound for the maximum load attained by the balanced allocation for a sequence of hypergraphs in terms of pair visibility.</p></div>","PeriodicalId":50224,"journal":{"name":"Journal of Computer and System Sciences","volume":"138 ","pages":"Article 103459"},"PeriodicalIF":1.1000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer and System Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022000023000582","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 1

Abstract

We consider a variation of balls-into-bins which randomly allocates m balls into n bins. Following Godfrey's model (SODA, 2008), we assume that each ball t, 1tm, comes with a hypergraph H(t)={B1,B2,,Bst}, and each edge BH(t) contains at least a logarithmic number of bins. Given d2, our d-choice algorithm chooses an edge BH(t), uniformly at random, and then chooses a set D of d random bins from the selected edge B. The ball is allocated to a least-loaded bin from D. We prove that if the hypergraphs H(1),,H(m) satisfy a balancedness condition and have low pair visibility, then after allocating m=Θ(n) balls, the maximum load of any bin is at most logdlogn+O(1), with high probability. Moreover, we establish a lower bound for the maximum load attained by the balanced allocation for a sequence of hypergraphs in terms of pair visibility.

在超图上均衡分配
我们考虑将m个球随机分配到n个箱中的球到箱中的变化。根据Godfrey的模型(SODA,2008),我们假设每个球t,1⩽t \10877;m都有一个超图H(t)={B1,B2,…,Bst},并且每个边B∈H(t)至少包含对数数量的bin。给定d⩾2,我们的d-选择算法均匀随机地选择一条边B∈H(t),然后从所选边B中选择一组d个随机箱。球被分配到d中的一个负载最小的箱⁡日志⁡n+O(1),具有高概率。此外,我们根据对可见性,为超图序列的平衡分配所获得的最大负载建立了一个下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computer and System Sciences
Journal of Computer and System Sciences 工程技术-计算机:理论方法
CiteScore
3.70
自引率
0.00%
发文量
58
审稿时长
68 days
期刊介绍: The Journal of Computer and System Sciences publishes original research papers in computer science and related subjects in system science, with attention to the relevant mathematical theory. Applications-oriented papers may also be accepted and they are expected to contain deep analytic evaluation of the proposed solutions. Research areas include traditional subjects such as: • Theory of algorithms and computability • Formal languages • Automata theory Contemporary subjects such as: • Complexity theory • Algorithmic Complexity • Parallel & distributed computing • Computer networks • Neural networks • Computational learning theory • Database theory & practice • Computer modeling of complex systems • Security and Privacy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信