A more accurate estimation with kernel machine for nonparametric spatial lag models

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yu Shu, Jinwen Liang, Yaohua Rong, Zhenzhen Fu, Yi Yang
{"title":"A more accurate estimation with kernel machine for nonparametric spatial lag models","authors":"Yu Shu,&nbsp;Jinwen Liang,&nbsp;Yaohua Rong,&nbsp;Zhenzhen Fu,&nbsp;Yi Yang","doi":"10.1016/j.spasta.2023.100786","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Ignoring potential spatial autocorrelation in georeferenced data may cause </span>biased estimators. Furthermore, existing studies assume insufficiently flexible structure of spatial lag model for some practical applications, which makes it difficult to portray the complex relationship between responses and </span>covariates<span>. Thus, we propose a novel garrotized kernel machine estimation method for the nonparametric spatial lag model and develop an eigenvector </span></span>spatial filtering<span> algorithm with sparse regression to filter spatial autocorrelation out of the residuals. The “one-group-at-a-time” cyclical coordinate descent algorithm is introduced for a solution path of tuning parameters. Our method can better describe the potential nonlinear relationship between responses and covariates, making it possible to model high-order interaction effects among covariates. Numerical results and the analysis of commodity residential house prices in large and medium-sized Chinese cities indicate that the proposed method achieves better prediction performance compared with competing ones. The result of real data analysis can provide guidance for the government to take targeted suppression measures of house prices for different areas.</span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675323000611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Ignoring potential spatial autocorrelation in georeferenced data may cause biased estimators. Furthermore, existing studies assume insufficiently flexible structure of spatial lag model for some practical applications, which makes it difficult to portray the complex relationship between responses and covariates. Thus, we propose a novel garrotized kernel machine estimation method for the nonparametric spatial lag model and develop an eigenvector spatial filtering algorithm with sparse regression to filter spatial autocorrelation out of the residuals. The “one-group-at-a-time” cyclical coordinate descent algorithm is introduced for a solution path of tuning parameters. Our method can better describe the potential nonlinear relationship between responses and covariates, making it possible to model high-order interaction effects among covariates. Numerical results and the analysis of commodity residential house prices in large and medium-sized Chinese cities indicate that the proposed method achieves better prediction performance compared with competing ones. The result of real data analysis can provide guidance for the government to take targeted suppression measures of house prices for different areas.

利用核机对非参数空间滞后模型进行更精确的估计
忽略地理参考数据中潜在的空间自相关可能会导致估计量存在偏差。此外,现有研究假设空间滞后模型的结构在某些实际应用中不够灵活,这使得很难描述响应和协变量之间的复杂关系。因此,我们为非参数空间滞后模型提出了一种新的加洛蒂核机估计方法,并开发了一种具有稀疏回归的特征向量空间滤波算法来滤除残差中的空间自相关。介绍了一种求解参数整定路径的“一组一次”循环坐标下降算法。我们的方法可以更好地描述响应和协变量之间潜在的非线性关系,从而有可能对协变量之间的高阶相互作用效应进行建模。数值结果和对中国大中城市商品住宅价格的分析表明,与竞争对手相比,该方法具有更好的预测性能。真实数据分析的结果可以为政府对不同地区的房价采取有针对性的抑制措施提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信