{"title":"Effect of seepage on soil arching effect in deep shield tunnel","authors":"Xu Song, Fan-Yan Meng, Ren-Peng Chen, Han-Lin Wang, Huai-Na Wu","doi":"10.1016/j.undsp.2023.02.011","DOIUrl":null,"url":null,"abstract":"<div><p>Shield tunneling and post-tunneling steady seepage are accompanied by stress and displacement variations, which could induce and influence the soil arching effect. Although there are many studies on the tunneling-induced soil arching effect, the research about the effect of seepage on soil arching effect is extremely lacking. In this study, a numerical model is firstly established and verified by field data. Then, a series of numerical models, whose simulation method of steady seepage is verified by adopting the conformal mapping technique, are established to study the soil arching evolution of deep-buried tunneling and post-construction steady seepage. The results indicate that seepage leads to an increase in effective vertical stress, which is consistent with the existing theory. The seepage weakens the soil arching effect resulting in the height of the arch zone reducing from 2.38<em>D</em> (<em>D</em> is the tunnel diameter) to 1.25<em>D</em>. The seepage leads to the further development of ground consolidation settlement, but the differential displacement in the soil mass decreases. The ground reaction curve in the steady seepage condition shows a bigger value than that after excavation. It is reasonable to control the ground loss ratio in the range of 0.5–1.0%, which can minimize overburden pressure with moderate ground deformation.</p></div>","PeriodicalId":48505,"journal":{"name":"Underground Space","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Underground Space","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2467967423000570","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 2
Abstract
Shield tunneling and post-tunneling steady seepage are accompanied by stress and displacement variations, which could induce and influence the soil arching effect. Although there are many studies on the tunneling-induced soil arching effect, the research about the effect of seepage on soil arching effect is extremely lacking. In this study, a numerical model is firstly established and verified by field data. Then, a series of numerical models, whose simulation method of steady seepage is verified by adopting the conformal mapping technique, are established to study the soil arching evolution of deep-buried tunneling and post-construction steady seepage. The results indicate that seepage leads to an increase in effective vertical stress, which is consistent with the existing theory. The seepage weakens the soil arching effect resulting in the height of the arch zone reducing from 2.38D (D is the tunnel diameter) to 1.25D. The seepage leads to the further development of ground consolidation settlement, but the differential displacement in the soil mass decreases. The ground reaction curve in the steady seepage condition shows a bigger value than that after excavation. It is reasonable to control the ground loss ratio in the range of 0.5–1.0%, which can minimize overburden pressure with moderate ground deformation.
期刊介绍:
Underground Space is an open access international journal without article processing charges (APC) committed to serving as a scientific forum for researchers and practitioners in the field of underground engineering. The journal welcomes manuscripts that deal with original theories, methods, technologies, and important applications throughout the life-cycle of underground projects, including planning, design, operation and maintenance, disaster prevention, and demolition. The journal is particularly interested in manuscripts related to the latest development of smart underground engineering from the perspectives of resilience, resources saving, environmental friendliness, humanity, and artificial intelligence. The manuscripts are expected to have significant innovation and potential impact in the field of underground engineering, and should have clear association with or application in underground projects.