A simple nonparametric conditional quantile estimator for time series with thin tails

IF 2.1 4区 经济学 Q2 ECONOMICS
Qiao Wang
{"title":"A simple nonparametric conditional quantile estimator for time series with thin tails","authors":"Qiao Wang","doi":"10.1016/j.econlet.2023.111349","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we consider a simple conditional quantile estimator in a nonparametric framework with time series data. We prove the consistency and asymptotic normality of our simple estimator for absolutely regular processes (<span><math><mi>β</mi></math></span>-mixing). This simple estimator can get better finite sample performances at thin tails than the check-function-based estimator. Finite sample simulation results show that our simple estimators have better finite sample performances at thin tails of time series data.</p></div>","PeriodicalId":11468,"journal":{"name":"Economics Letters","volume":"232 ","pages":"Article 111349"},"PeriodicalIF":2.1000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economics Letters","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165176523003749","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we consider a simple conditional quantile estimator in a nonparametric framework with time series data. We prove the consistency and asymptotic normality of our simple estimator for absolutely regular processes (β-mixing). This simple estimator can get better finite sample performances at thin tails than the check-function-based estimator. Finite sample simulation results show that our simple estimators have better finite sample performances at thin tails of time series data.

具有细尾的时间序列的简单非参数条件分位数估计
在这项研究中,我们考虑了一个具有时间序列数据的非参数框架中的简单条件分位数估计。我们证明了绝对正则过程(β-混合)的简单估计量的一致性和渐近正态性。与基于检验函数的估计器相比,这种简单的估计员可以在细尾处获得更好的有限样本性能。有限样本模拟结果表明,在时间序列数据的细尾处,我们的简单估计器具有更好的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Economics Letters
Economics Letters ECONOMICS-
CiteScore
3.20
自引率
5.00%
发文量
348
审稿时长
30 days
期刊介绍: Many economists today are concerned by the proliferation of journals and the concomitant labyrinth of research to be conquered in order to reach the specific information they require. To combat this tendency, Economics Letters has been conceived and designed outside the realm of the traditional economics journal. As a Letters Journal, it consists of concise communications (letters) that provide a means of rapid and efficient dissemination of new results, models and methods in all fields of economic research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信