Ultrafast synthesis of cobalt/carbon nanocomposites by magnetic induction heating for oxygen evolution reaction

Qiming Liu , Samuel McNair , Forrest Nichols , Bingzhang Lu , Bingzhe Yu , Dingjie Pan , Jamie Ko , Amrinder Bhuller , Frank Bridges , Shaowei Chen
{"title":"Ultrafast synthesis of cobalt/carbon nanocomposites by magnetic induction heating for oxygen evolution reaction","authors":"Qiming Liu ,&nbsp;Samuel McNair ,&nbsp;Forrest Nichols ,&nbsp;Bingzhang Lu ,&nbsp;Bingzhe Yu ,&nbsp;Dingjie Pan ,&nbsp;Jamie Ko ,&nbsp;Amrinder Bhuller ,&nbsp;Frank Bridges ,&nbsp;Shaowei Chen","doi":"10.1016/j.asems.2023.100046","DOIUrl":null,"url":null,"abstract":"<div><p>Metal/carbon nanocomposites have shown great potential as high-performance, low-cost electrocatalysts owing largely to their unique metal-support interactions. These nanocomposites are typically prepared by conventional pyrolysis that is tedious and energy-intensive. Herein, we report the ultrafast preparation of cobalt/carbon nanocomposites by magnetic induction heating (MIH) of metal organic frameworks within seconds under an inert atmosphere. The resulting samples consist of cobalt nanoparticles encapsulated within defective carbon shells, and effectively catalyze oxygen evolution reaction (OER) in alkaline media. Among the series, the sample prepared at 400 A for 10 s exhibits the best OER performance, needing a low overpotential of +308 mV to reach the current density of 10 mA cm<sup>−2</sup>, along with excellent stability, and even outperforms commercial RuO<sub>2</sub> at high overpotentials. This is ascribed to the charge transfer between the carbon scaffold and metal nanoparticles. Operando X-ray absorption spectroscopy measurements show that the electrochemically produced CoOOH species is responsible for the high electrocatalytic performance. The results highlight the unique potential of MIH in the development of effective nanocomposite catalysts for electrochemical energy technologies.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"2 1","pages":"Article 100046"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor and Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773045X23000018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Metal/carbon nanocomposites have shown great potential as high-performance, low-cost electrocatalysts owing largely to their unique metal-support interactions. These nanocomposites are typically prepared by conventional pyrolysis that is tedious and energy-intensive. Herein, we report the ultrafast preparation of cobalt/carbon nanocomposites by magnetic induction heating (MIH) of metal organic frameworks within seconds under an inert atmosphere. The resulting samples consist of cobalt nanoparticles encapsulated within defective carbon shells, and effectively catalyze oxygen evolution reaction (OER) in alkaline media. Among the series, the sample prepared at 400 A for 10 s exhibits the best OER performance, needing a low overpotential of +308 mV to reach the current density of 10 mA cm−2, along with excellent stability, and even outperforms commercial RuO2 at high overpotentials. This is ascribed to the charge transfer between the carbon scaffold and metal nanoparticles. Operando X-ray absorption spectroscopy measurements show that the electrochemically produced CoOOH species is responsible for the high electrocatalytic performance. The results highlight the unique potential of MIH in the development of effective nanocomposite catalysts for electrochemical energy technologies.

磁感应加热析氧反应超快合成钴/碳纳米复合材料
金属/碳纳米复合材料在很大程度上由于其独特的金属-载体相互作用而显示出作为高性能、低成本电催化剂的巨大潜力。这些纳米复合材料通常是通过传统的热解制备的,这是乏味的且耗能高的。在此,我们报道了在惰性气氛下,通过金属有机框架的磁感应加热(MIH)在几秒钟内超快制备钴/碳纳米复合材料。所得样品由包裹在有缺陷的碳壳中的钴纳米颗粒组成,并在碱性介质中有效催化析氧反应(OER)。在该系列中,在400 A下制备10 s的样品表现出最佳的OER性能,需要+308 mV的低过电位才能达到10 mA cm−2的电流密度,同时具有优异的稳定性,甚至在高过电位下优于商用RuO2。这归因于碳支架和金属纳米颗粒之间的电荷转移。操作X射线吸收光谱测量表明,电化学产生的CoOOH物种是高电催化性能的原因。研究结果突出了MIH在开发用于电化学能源技术的有效纳米复合催化剂方面的独特潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信