Two birds with one stone: Engineering polymeric carbon nitride with n-π∗ electronic transition for extending light absorption and reducing charge recombination

Gege Zhao , Bangwang Li , Xiaonan Yang , Xiaomeng Zhang , Zhongfei Li , Daochuan Jiang , Haiwei Du , Chuhong Zhu , Huiquan Li , Can Xue , Yupeng Yuan
{"title":"Two birds with one stone: Engineering polymeric carbon nitride with n-π∗ electronic transition for extending light absorption and reducing charge recombination","authors":"Gege Zhao ,&nbsp;Bangwang Li ,&nbsp;Xiaonan Yang ,&nbsp;Xiaomeng Zhang ,&nbsp;Zhongfei Li ,&nbsp;Daochuan Jiang ,&nbsp;Haiwei Du ,&nbsp;Chuhong Zhu ,&nbsp;Huiquan Li ,&nbsp;Can Xue ,&nbsp;Yupeng Yuan","doi":"10.1016/j.apmate.2022.100077","DOIUrl":null,"url":null,"abstract":"<div><p>The weak visible light harvesting and high charge recombination are two main problems that lead to a low photocatalytic H<sub>2</sub> generation of polymeric carbon nitride (<em>p</em>-CN). To date, the approaches that are extensively invoked to address this problem mainly rely on heteroatom-doping and heterostructures, and it remains a grand challenge in regulating dopant-free <em>p</em>-CN for increasing H<sub>2</sub> generation. Here, we report utilizing the inherent n-π∗ electronic transition to simultaneously realize extended light absorption and reduced charge recombination on <em>p</em>-CN nanosheets. Such n-π∗ electronic transition yields a new absorption peak of 490 ​nm, which extends the light absorption edge of <em>p</em>-CN to approximately 590 ​nm. Meanwhile, as revealed by the photoluminescence (PL) spectra of <em>p</em>-CN at the single-particle level, the n-π∗ electronic transition gives rise to an almost quenched PL signal at room temperature, unravelling a dramatically reduced charge recombination. As a consequence, a remarkably improved photocatalytic performance is realized under visible light irradiation, with a H<sub>2</sub> generation rate of 5553 ​μmol ​g<sup>−1</sup>∙h<sup>−1</sup>, ∼ 12 times higher than that of pristine <em>p</em>-CN (460 ​μmol∙g<sup>−1</sup>∙h<sup>−1</sup>) in the absence of the n-π∗ transition. This work illustrates the highlights of using the inherent n-π∗ electronic transition to improve the photocatalytic performance of dopant-free carbon nitrides.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X22000604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The weak visible light harvesting and high charge recombination are two main problems that lead to a low photocatalytic H2 generation of polymeric carbon nitride (p-CN). To date, the approaches that are extensively invoked to address this problem mainly rely on heteroatom-doping and heterostructures, and it remains a grand challenge in regulating dopant-free p-CN for increasing H2 generation. Here, we report utilizing the inherent n-π∗ electronic transition to simultaneously realize extended light absorption and reduced charge recombination on p-CN nanosheets. Such n-π∗ electronic transition yields a new absorption peak of 490 ​nm, which extends the light absorption edge of p-CN to approximately 590 ​nm. Meanwhile, as revealed by the photoluminescence (PL) spectra of p-CN at the single-particle level, the n-π∗ electronic transition gives rise to an almost quenched PL signal at room temperature, unravelling a dramatically reduced charge recombination. As a consequence, a remarkably improved photocatalytic performance is realized under visible light irradiation, with a H2 generation rate of 5553 ​μmol ​g−1∙h−1, ∼ 12 times higher than that of pristine p-CN (460 ​μmol∙g−1∙h−1) in the absence of the n-π∗ transition. This work illustrates the highlights of using the inherent n-π∗ electronic transition to improve the photocatalytic performance of dopant-free carbon nitrides.

Abstract Image

一举两得:具有n-π*电子跃迁的工程聚合物氮化碳,用于延长光吸收和减少电荷复合
弱可见光捕获和高电荷复合是导致聚合物氮化碳(p-CN)的低光催化H2生成的两个主要问题。到目前为止,被广泛引用来解决这个问题的方法主要依赖于杂原子掺杂和异质结构,并且在调节无掺杂剂的p-CN以增加H2生成方面仍然是一个巨大的挑战。在这里,我们报道了利用固有的n-π*电子跃迁在p-CN纳米片上同时实现扩展的光吸收和减少的电荷复合。这种n-π*电子跃迁产生490的新吸收峰​nm,这将p-CN的光吸收边缘延伸到大约590​nm。同时,正如p-CN在单粒子水平上的光致发光(PL)光谱所揭示的那样,n-π*电子跃迁在室温下产生几乎猝灭的PL信号,揭示了显著减少的电荷复合。因此,在可见光照射下实现了显著提高的光催化性能,H2生成率为5553​μmol​g−1∙h−1,约为原始p-CN的12倍(460​μmol∙g−1∙h−1)。这项工作说明了使用固有的n-π*电子跃迁来提高无掺杂碳氮化物的光催化性能的亮点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信