Botnet DGA Domain Name Classification Using Transformer Network with Hybrid Embedding

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ling Ding , Peng Du , Haiwei Hou , Jian Zhang , Di Jin , Shifei Ding
{"title":"Botnet DGA Domain Name Classification Using Transformer Network with Hybrid Embedding","authors":"Ling Ding ,&nbsp;Peng Du ,&nbsp;Haiwei Hou ,&nbsp;Jian Zhang ,&nbsp;Di Jin ,&nbsp;Shifei Ding","doi":"10.1016/j.bdr.2023.100395","DOIUrl":null,"url":null,"abstract":"<div><p><span>One of the severest threats to cyber security is botnet, which typically uses domain names generated by Domain Generation Algorithms (DGAs) to communicate with their Command and Control (C&amp;C) infrastructure. </span>DGA detection<span> and classification play an important role of assisting cyber security researchers to detect botnet C&amp;C servers. However, many of the existing DGA detection models only focus on single scale word embedding<span> method, and very few models are specially designed to extract more effective features for DGA detection from multiple scales word embedding. To alleviate above questions, first we propose a hybrid word embedding method, which combines character level embedding and bigram level embedding to make full use of the domain names information, and then, we design a deep neural network with hybrid embedding method to distinguish DGA domains from known legitimate domains. Finally, we evaluate our hybrid embedding method and the proposed model on ONIST dataset and compare our methods with several state-of-the-art DGA classification methods.</span></span></p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221457962300028X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

One of the severest threats to cyber security is botnet, which typically uses domain names generated by Domain Generation Algorithms (DGAs) to communicate with their Command and Control (C&C) infrastructure. DGA detection and classification play an important role of assisting cyber security researchers to detect botnet C&C servers. However, many of the existing DGA detection models only focus on single scale word embedding method, and very few models are specially designed to extract more effective features for DGA detection from multiple scales word embedding. To alleviate above questions, first we propose a hybrid word embedding method, which combines character level embedding and bigram level embedding to make full use of the domain names information, and then, we design a deep neural network with hybrid embedding method to distinguish DGA domains from known legitimate domains. Finally, we evaluate our hybrid embedding method and the proposed model on ONIST dataset and compare our methods with several state-of-the-art DGA classification methods.

基于混合嵌入变压器网络的Botnet DGA域名分类
网络安全面临的最严重威胁之一是僵尸网络,它通常使用域生成算法(DGA)生成的域名与其指挥与控制(C&;C)基础设施进行通信。DGA检测和分类在协助网络安全研究人员检测僵尸网络C&;C服务器。然而,现有的DGA检测模型大多只关注单尺度词嵌入方法,很少有模型专门设计用于从多尺度词嵌入中提取更有效的DGA特征。为了缓解上述问题,我们首先提出了一种混合单词嵌入方法,该方法将字符级嵌入和双字符级嵌入相结合,以充分利用域名信息,然后,我们设计了一种具有混合嵌入方法的深度神经网络,以区分DGA域和已知合法域。最后,我们在ONIST数据集上评估了我们的混合嵌入方法和所提出的模型,并将我们的方法与几种最先进的DGA分类方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信