Stellar parameter estimation in O-type stars using artificial neural networks

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
M. Flores R. , L.J. Corral , C.R. Fierro-Santillán , S.G. Navarro
{"title":"Stellar parameter estimation in O-type stars using artificial neural networks","authors":"M. Flores R. ,&nbsp;L.J. Corral ,&nbsp;C.R. Fierro-Santillán ,&nbsp;S.G. Navarro","doi":"10.1016/j.ascom.2023.100760","DOIUrl":null,"url":null,"abstract":"<div><p><span>This work presents the results of the implementation of a deep learning<span> system capable of estimating the effective temperature and surface gravity of O-type stars. The proposed system was trained with a database of 5,557 synthetic spectra computed with the stellar atmosphere code CMFGEN that covers stars with </span></span><span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>eff</mi></mrow></msub></math></span> from <span><math><mo>∼</mo></math></span>20,000 K to <span><math><mo>∼</mo></math></span>58,000 K, <span><math><mrow><mi>l</mi><mi>o</mi><mi>g</mi><mrow><mo>(</mo><mi>L</mi><mo>/</mo><msub><mrow><mi>L</mi></mrow><mrow><mo>⊙</mo></mrow></msub><mo>)</mo></mrow></mrow></math></span> from 4.3 to 6.3 dex, log<!--> <span><math><mi>g</mi></math></span> from 2.4 to 4.2 dex, and mass from 9 to 120 <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span><span>. Important advantages proposed in this paper include using a set of equivalent width measurements over the optical region of the stellar spectra, which avoids processing the full spectra with the inherent computational cost and allows it to apply the same trained system over different spectra resolutions. The validation of the system was performed by processing a sample of twenty O-type stars taken from the IACOB database, and a subgroup of eleven stars of those twenty taken from The Galactic O-Star Spectroscopic Catalog (GOSC) with lower resolution. As complementary work, we show the results of a synthetic spectra fitting process with the aim of simplifying the comparison with other estimations and parameter fitting from the literature.</span></p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133723000756","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents the results of the implementation of a deep learning system capable of estimating the effective temperature and surface gravity of O-type stars. The proposed system was trained with a database of 5,557 synthetic spectra computed with the stellar atmosphere code CMFGEN that covers stars with Teff from 20,000 K to 58,000 K, log(L/L) from 4.3 to 6.3 dex, log g from 2.4 to 4.2 dex, and mass from 9 to 120 M. Important advantages proposed in this paper include using a set of equivalent width measurements over the optical region of the stellar spectra, which avoids processing the full spectra with the inherent computational cost and allows it to apply the same trained system over different spectra resolutions. The validation of the system was performed by processing a sample of twenty O-type stars taken from the IACOB database, and a subgroup of eleven stars of those twenty taken from The Galactic O-Star Spectroscopic Catalog (GOSC) with lower resolution. As complementary work, we show the results of a synthetic spectra fitting process with the aim of simplifying the comparison with other estimations and parameter fitting from the literature.

O型星恒星参数的人工神经网络估计
这项工作展示了能够估计O型恒星有效温度和表面重力的深度学习系统的实施结果。所提出的系统是用5557个合成光谱的数据库进行训练的,这些合成光谱是用恒星大气代码CMFGEN计算的,涵盖了Teff从~20000 K到~58000 K,log(L/L⊙)从4.3到6.3 dex,log g从2.4到4.2 dex,质量从9到120 M⊙的恒星。本文提出的重要优点包括在恒星光谱的光学区域使用一组等效宽度测量,这避免了用固有的计算成本处理全光谱,并允许它在不同的光谱分辨率上应用相同的训练系统。该系统的验证是通过处理从IACOB数据库中提取的20颗O型恒星的样本,以及从低分辨率的银河O型恒星光谱目录(GOSC)中提取的这20颗恒星中的11颗恒星的亚组来进行的。作为补充工作,我们展示了合成光谱拟合过程的结果,目的是简化与文献中其他估计和参数拟合的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信