Acid-labile chemical bonds-based nanoparticles for endosome escape and intracellular delivery

Ruoyu Cheng , Shiqi Wang , Hélder A. Santos
{"title":"Acid-labile chemical bonds-based nanoparticles for endosome escape and intracellular delivery","authors":"Ruoyu Cheng ,&nbsp;Shiqi Wang ,&nbsp;Hélder A. Santos","doi":"10.1016/j.bmt.2023.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>In the last years there has been a booming in the development of biological pharmaceuticals, and various nanoparticle delivery systems have been developed to overcome biological barriers to maximize the therapeutic potentials. Especially, when these drug-loaded nanoparticle systems arrive at the target cells, they must be successfully internalized into the cells, followed by the endosome escape, to release the payload in the cytoplasm. This is crucial so that the payloads are not degraded in the endosome (around pH 6.8–6.0) or lysosome (around pH 4.5). Considering the acid environment of the endosome, several studies have shown the design of different acid-labile nanoparticle delivery systems attempting to achieve endosome escape by, for example, endosomal rupture, membrane destabilization, and membrane fusion. In this mini-review, we summarize current designs in acid-labile chemical bonds for endosome escape of nanosystems. First, we briefly introduce the structural design of acid-labile nanoparticles and their endosomal escape mechanisms. Then, we review recent research work on the topic, highlighting how the nanoparticle designs can be used in endosome escape for different biomedical applications. Finally, we discuss the challenges and future perspectives in this field.</p></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"3 ","pages":"Pages 52-58"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949723X23000016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In the last years there has been a booming in the development of biological pharmaceuticals, and various nanoparticle delivery systems have been developed to overcome biological barriers to maximize the therapeutic potentials. Especially, when these drug-loaded nanoparticle systems arrive at the target cells, they must be successfully internalized into the cells, followed by the endosome escape, to release the payload in the cytoplasm. This is crucial so that the payloads are not degraded in the endosome (around pH 6.8–6.0) or lysosome (around pH 4.5). Considering the acid environment of the endosome, several studies have shown the design of different acid-labile nanoparticle delivery systems attempting to achieve endosome escape by, for example, endosomal rupture, membrane destabilization, and membrane fusion. In this mini-review, we summarize current designs in acid-labile chemical bonds for endosome escape of nanosystems. First, we briefly introduce the structural design of acid-labile nanoparticles and their endosomal escape mechanisms. Then, we review recent research work on the topic, highlighting how the nanoparticle designs can be used in endosome escape for different biomedical applications. Finally, we discuss the challenges and future perspectives in this field.

基于酸不稳定化学键的纳米粒子用于内体逃逸和细胞内递送
在过去的几年里,生物药物的发展蓬勃发展,各种纳米颗粒递送系统已经被开发出来,以克服生物障碍,最大限度地发挥治疗潜力。特别是,当这些载有药物的纳米颗粒系统到达靶细胞时,它们必须成功地内化到细胞中,然后内体逃逸,以在细胞质中释放有效载荷。这一点至关重要,这样有效载荷就不会在内体(pH 6.8–6.0左右)或溶酶体(pH 4.5左右)中降解。考虑到内体的酸性环境,几项研究表明,设计了不同的酸不稳定纳米颗粒递送系统,试图通过内体破裂、膜不稳定和膜融合等方式实现内体逃逸。在这篇小型综述中,我们总结了目前用于纳米系统内体逃逸的酸不稳定化学键的设计。首先,我们简要介绍了酸不稳定纳米颗粒的结构设计及其内体逃逸机制。然后,我们回顾了最近关于该主题的研究工作,重点介绍了纳米颗粒设计如何用于不同生物医学应用的内体逃逸。最后,我们讨论了这一领域的挑战和未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信