Enabling kilonova science with Nancy Grace Roman Space Telescope

IF 4.2 3区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Igor Andreoni , Michael W. Coughlin , Alexander W. Criswell , Mattia Bulla , Andrew Toivonen , Leo P. Singer , Antonella Palmese , E. Burns , Suvi Gezari , Mansi M. Kasliwal , R. Weizmann Kiendrebeogo , Ashish Mahabal , Takashi J. Moriya , Armin Rest , Dan Scolnic , Robert A. Simcoe , Jamie Soon , Robert Stein , Tony Travouillon
{"title":"Enabling kilonova science with Nancy Grace Roman Space Telescope","authors":"Igor Andreoni ,&nbsp;Michael W. Coughlin ,&nbsp;Alexander W. Criswell ,&nbsp;Mattia Bulla ,&nbsp;Andrew Toivonen ,&nbsp;Leo P. Singer ,&nbsp;Antonella Palmese ,&nbsp;E. Burns ,&nbsp;Suvi Gezari ,&nbsp;Mansi M. Kasliwal ,&nbsp;R. Weizmann Kiendrebeogo ,&nbsp;Ashish Mahabal ,&nbsp;Takashi J. Moriya ,&nbsp;Armin Rest ,&nbsp;Dan Scolnic ,&nbsp;Robert A. Simcoe ,&nbsp;Jamie Soon ,&nbsp;Robert Stein ,&nbsp;Tony Travouillon","doi":"10.1016/j.astropartphys.2023.102904","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span><span>Binary neutron star mergers and neutron star–black hole mergers are multi-messenger sources that can be detected in </span>gravitational waves and in </span>electromagnetic radiation<span>. The low electron fraction of neutron star merger ejecta favors the production of heavy elements such as </span></span>lanthanides and actinides via rapid neutron capture (</span><span><math><mi>r</mi></math></span>-process). The decay of these unstable nuclei powers an infrared-bright transient called a “kilonova”. The discovery of a population of kilonovae will allow us to determine if neutron star mergers are the dominant sites for <span><math><mi>r</mi></math></span><span><span>-process element nucleosynthesis, constrain the equation of state<span><span> of nuclear matter, and make independent measurements of the Hubble constant. The Nancy Grace Roman Space Telescope (Roman) will have a unique combination of depth, near-infrared sensitivity, and wide </span>field of view. These characteristics will enable Roman’s discovery of GW counterparts that will be missed by </span></span>optical telescopes, such as kilonova that are associated with large distances, high lanthanide fractions, high binary mass-ratios, large dust extinction in the line of sight, or that are observed from equatorial viewing angles. In preparation for Roman’s launch and operations, our analysis suggests to (i) make available a rapid (</span><span><math><mrow><mo>∼</mo><mn>1</mn></mrow></math></span> week) Target of Opportunity mode for GW follow-up; (ii) include observations of the High Latitude Time-Domain survey footprint in at least two filters (preferably the F158 and F213 filters) with a cadence of <span><math><mrow><mo>≲</mo><mn>8</mn></mrow></math></span> days; (iii) operate in synergy with Rubin Observatory. Following these recommendations, we expect that 1–6 kilonovae can be identified by Roman via target of opportunity observations of well localized (<span><math><mrow><mi>A</mi><mo>&lt;</mo><mn>10</mn></mrow></math></span> <!--> <!-->deg<span><math><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup></math></span>, 90% C.I.) neutron star mergers during 1.5 years of the LIGO-Virgo-KAGRA fifth (or <span><math><mo>∼</mo></math></span>4–21 in during the sixth) observing run. A sample of 5–40 serendipitously discovered kilonovae can be collected in a 5-year high latitude survey.</p></div>","PeriodicalId":55439,"journal":{"name":"Astroparticle Physics","volume":"155 ","pages":"Article 102904"},"PeriodicalIF":4.2000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927650523000907","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Binary neutron star mergers and neutron star–black hole mergers are multi-messenger sources that can be detected in gravitational waves and in electromagnetic radiation. The low electron fraction of neutron star merger ejecta favors the production of heavy elements such as lanthanides and actinides via rapid neutron capture (r-process). The decay of these unstable nuclei powers an infrared-bright transient called a “kilonova”. The discovery of a population of kilonovae will allow us to determine if neutron star mergers are the dominant sites for r-process element nucleosynthesis, constrain the equation of state of nuclear matter, and make independent measurements of the Hubble constant. The Nancy Grace Roman Space Telescope (Roman) will have a unique combination of depth, near-infrared sensitivity, and wide field of view. These characteristics will enable Roman’s discovery of GW counterparts that will be missed by optical telescopes, such as kilonova that are associated with large distances, high lanthanide fractions, high binary mass-ratios, large dust extinction in the line of sight, or that are observed from equatorial viewing angles. In preparation for Roman’s launch and operations, our analysis suggests to (i) make available a rapid (1 week) Target of Opportunity mode for GW follow-up; (ii) include observations of the High Latitude Time-Domain survey footprint in at least two filters (preferably the F158 and F213 filters) with a cadence of 8 days; (iii) operate in synergy with Rubin Observatory. Following these recommendations, we expect that 1–6 kilonovae can be identified by Roman via target of opportunity observations of well localized (A<10  deg2, 90% C.I.) neutron star mergers during 1.5 years of the LIGO-Virgo-KAGRA fifth (or 4–21 in during the sixth) observing run. A sample of 5–40 serendipitously discovered kilonovae can be collected in a 5-year high latitude survey.

南希·格蕾丝·罗马太空望远镜使千新星科学成为可能
二元中子星合并和中子星-黑洞合并是可以在引力波和电磁辐射中检测到的多信使源。中子星合并喷出物的低电子分数有利于通过快速中子捕获(r过程)生产镧系元素和锕系元素等重元素。这些不稳定原子核的衰变为一种被称为“千新星”的红外明亮瞬变提供了动力。千新星群的发现将使我们能够确定中子星合并是否是r过程元素核合成的主要地点,约束核物质的状态方程,并对哈勃常数进行独立测量。Nancy Grace Roman太空望远镜(Roman)将具有深度、近红外灵敏度和宽视场的独特组合。这些特征将使罗曼能够发现光学望远镜会错过的GW对应物,例如与大距离、高镧系元素分数、高双星质量比、视线中的大尘埃消光有关的千新星,或者从赤道视角观察到的千新星。在为Roman的推出和运营做准备时,我们的分析建议(i)为GW后续行动提供快速(~1周)的机会目标模式;(ii)包括在至少两个滤波器(优选F158和F213滤波器)中对高纬度时域调查足迹的观测,频率为≲8天;(iii)与鲁宾天文台协同运作。根据这些建议,我们预计Roman可以在LIGO室女座KAGRA第五次(或第六次)观测运行的1.5年内,通过对定位良好(A<;10 deg2,90%C.I.)的中子星合并的机会目标观测,确定1-6千新星。在5年的高纬度调查中,可以收集到5-40个偶然发现的千新星样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astroparticle Physics
Astroparticle Physics 地学天文-天文与天体物理
CiteScore
8.00
自引率
2.90%
发文量
41
审稿时长
79 days
期刊介绍: Astroparticle Physics publishes experimental and theoretical research papers in the interacting fields of Cosmic Ray Physics, Astronomy and Astrophysics, Cosmology and Particle Physics focusing on new developments in the following areas: High-energy cosmic-ray physics and astrophysics; Particle cosmology; Particle astrophysics; Related astrophysics: supernova, AGN, cosmic abundances, dark matter etc.; Gravitational waves; High-energy, VHE and UHE gamma-ray astronomy; High- and low-energy neutrino astronomy; Instrumentation and detector developments related to the above-mentioned fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信