Substrate stiffness dominants cell gene expression via regulation of HDAC3 subcellular localization

IF 4.7 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Peng Wang , Jiwen Geng , Chunyu Tan , Qiang Wei
{"title":"Substrate stiffness dominants cell gene expression via regulation of HDAC3 subcellular localization","authors":"Peng Wang ,&nbsp;Jiwen Geng ,&nbsp;Chunyu Tan ,&nbsp;Qiang Wei","doi":"10.1016/j.colcom.2023.100719","DOIUrl":null,"url":null,"abstract":"<div><p>Adhesive interface stiffness is capable of modulating cellular behavior and gene expression, yet the underlying mechanobiological mechanisms remain unclear. In this study, we investigated the effects of interface stiffness on gene expression pathways by hydrogels with divergent stiffness. Our results reveal that adhesive interface stiffness affects cytoplasmic mechanotranduction as well as nuclear mechanics, and ultimately regulating the subcellular localization of HDAC3. Further investigation unfolds that HDAC3 directly affects global acetylation levels within nucleus. And HDAC3-induced acetylation changes are regulated by myosin contraction, thereby portraying downstream gene expression. Additionally, our study indicates that the interface stiffness-mediated regulation of HDAC3 nuclear-cytoplasmic redistribution is dependent on CRM1, and inhibition of CRM1 impedes the nuclear export of HDAC3. In summary, our work provides an overview of how the subcellular localization of HDAC3 can be manipulated through the regulation of cell adhesion interface stiffness, thereby altering upstream RNA polymerase II activity and gene expression.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"55 ","pages":"Article 100719"},"PeriodicalIF":4.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Interface Science Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215038223000262","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Adhesive interface stiffness is capable of modulating cellular behavior and gene expression, yet the underlying mechanobiological mechanisms remain unclear. In this study, we investigated the effects of interface stiffness on gene expression pathways by hydrogels with divergent stiffness. Our results reveal that adhesive interface stiffness affects cytoplasmic mechanotranduction as well as nuclear mechanics, and ultimately regulating the subcellular localization of HDAC3. Further investigation unfolds that HDAC3 directly affects global acetylation levels within nucleus. And HDAC3-induced acetylation changes are regulated by myosin contraction, thereby portraying downstream gene expression. Additionally, our study indicates that the interface stiffness-mediated regulation of HDAC3 nuclear-cytoplasmic redistribution is dependent on CRM1, and inhibition of CRM1 impedes the nuclear export of HDAC3. In summary, our work provides an overview of how the subcellular localization of HDAC3 can be manipulated through the regulation of cell adhesion interface stiffness, thereby altering upstream RNA polymerase II activity and gene expression.

Abstract Image

底物硬度通过调控HDAC3亚细胞定位来支配细胞基因表达
粘附界面硬度能够调节细胞行为和基因表达,但其潜在的机械生物学机制尚不清楚。在这项研究中,我们研究了界面刚度对具有发散刚度的水凝胶的基因表达途径的影响。我们的研究结果表明,粘附界面硬度影响细胞质的机械结构和核力学,并最终调节HDAC3的亚细胞定位。进一步的研究表明HDAC3直接影响细胞核内的整体乙酰化水平。HDAC3诱导的乙酰化变化由肌球蛋白收缩调节,从而描绘下游基因表达。此外,我们的研究表明,界面硬度介导的HDAC3核质再分配的调节依赖于CRM1,而CRM1的抑制阻碍了HDAC3的核输出。总之,我们的工作概述了如何通过调节细胞粘附界面硬度来操纵HDAC3的亚细胞定位,从而改变上游RNA聚合酶II的活性和基因表达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Colloid and Interface Science Communications
Colloid and Interface Science Communications Materials Science-Materials Chemistry
CiteScore
9.40
自引率
6.70%
发文量
125
审稿时长
43 days
期刊介绍: Colloid and Interface Science Communications provides a forum for the highest visibility and rapid publication of short initial reports on new fundamental concepts, research findings, and topical applications at the forefront of the increasingly interdisciplinary area of colloid and interface science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信