{"title":"Cadmium elimination from wastewater using potato peel biochar modified by ZIF-8 and magnetic nanoparticle","authors":"Rauf Foroutan , Seyed Jamaleddin Peighambardoust , Solmaz Ghojavand , Sima Farjadfard , Bahman Ramavandi","doi":"10.1016/j.colcom.2023.100723","DOIUrl":null,"url":null,"abstract":"<div><p>A recyclable and magnetic nanocomposite was fabricated from biochar of potato peel (BPP), MnFe<sub>2</sub>O<sub>4</sub>, and ZIF-8 (BET area: 174.92m<sup>2</sup>/g). The Cd<sup>2+</sup> removal using BPP/MnFe<sub>2</sub>O<sub>4</sub>@ZIF-8 was maximized at pH 6, a temperature of 45 °C, and a time of 100 min. The capacity of Cd adsorption using BPP, BPP/MnFe<sub>2</sub>O<sub>4,</sub> and BPP/MnFe<sub>2</sub>O<sub>4</sub>@ZIF-8 was computed to be 33.76, 45.02, and 80.52 mg/g, respectively. The influence of coexistence ions on cadmium elimination by BPP/MnFe<sub>2</sub>O<sub>4</sub>@ZIF-8 was explored. Shipbuilding wastewater was treated to an acceptable level using the nanocomposite. The Cd adsorption was endothermic and followed the pseudo-second-order (R<sup>2</sup> > 0.98). Therefore, BPP/MnFe<sub>2</sub>O<sub>4</sub>@ZIF-8 is an affordable material for treating cadmium.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Interface Science Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215038223000304","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 13
Abstract
A recyclable and magnetic nanocomposite was fabricated from biochar of potato peel (BPP), MnFe2O4, and ZIF-8 (BET area: 174.92m2/g). The Cd2+ removal using BPP/MnFe2O4@ZIF-8 was maximized at pH 6, a temperature of 45 °C, and a time of 100 min. The capacity of Cd adsorption using BPP, BPP/MnFe2O4, and BPP/MnFe2O4@ZIF-8 was computed to be 33.76, 45.02, and 80.52 mg/g, respectively. The influence of coexistence ions on cadmium elimination by BPP/MnFe2O4@ZIF-8 was explored. Shipbuilding wastewater was treated to an acceptable level using the nanocomposite. The Cd adsorption was endothermic and followed the pseudo-second-order (R2 > 0.98). Therefore, BPP/MnFe2O4@ZIF-8 is an affordable material for treating cadmium.
期刊介绍:
Colloid and Interface Science Communications provides a forum for the highest visibility and rapid publication of short initial reports on new fundamental concepts, research findings, and topical applications at the forefront of the increasingly interdisciplinary area of colloid and interface science.