{"title":"Design and analysis of reactive distillation for the production of isopropyl myristate","authors":"S. Purna Pushkala , Rames C. Panda","doi":"10.1016/j.clce.2022.100090","DOIUrl":null,"url":null,"abstract":"<div><p>This work explains the production of isopropyl myristate (IPM), an ester formed from the esterification reaction of myristic acid and isopropyl alcohol in a reactive-distillation column. The design of the column has been done to achieve a dual process objective of achieving product purity of 99% and reactant conversion (99%) to produce 1000 kg/hr IPM at 30°C and about 1 bar pressure conditions existing within the column. The reboiler duty comes to be 190 kW against the condenser duty of 160 kW when an entrainer, cyclohexane at 1975 kg/hr is used, which can be reduced by employing two columns. The nonlinear quaternary system is solved using NRTL thermodynamic package, and the reactive distillation column is designed. The IMC-PID-based temperature controller has been designed for a closed-loop structure to achieve safe operation and desired dynamic control behavior and simulated by using MATLAB. The column has been stable under both steady-state and dynamic conditions by stabilizing the non-linear performance of the column by the controllers. The process integration of the reactor and separator into one column has minimized a process plant's operating and investment cost.</p></div>","PeriodicalId":100251,"journal":{"name":"Cleaner Chemical Engineering","volume":"5 ","pages":"Article 100090"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772782322000882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work explains the production of isopropyl myristate (IPM), an ester formed from the esterification reaction of myristic acid and isopropyl alcohol in a reactive-distillation column. The design of the column has been done to achieve a dual process objective of achieving product purity of 99% and reactant conversion (99%) to produce 1000 kg/hr IPM at 30°C and about 1 bar pressure conditions existing within the column. The reboiler duty comes to be 190 kW against the condenser duty of 160 kW when an entrainer, cyclohexane at 1975 kg/hr is used, which can be reduced by employing two columns. The nonlinear quaternary system is solved using NRTL thermodynamic package, and the reactive distillation column is designed. The IMC-PID-based temperature controller has been designed for a closed-loop structure to achieve safe operation and desired dynamic control behavior and simulated by using MATLAB. The column has been stable under both steady-state and dynamic conditions by stabilizing the non-linear performance of the column by the controllers. The process integration of the reactor and separator into one column has minimized a process plant's operating and investment cost.