A review on biomass thermal-oxidative decomposition data and machine learning prediction of thermal analysis

Yuying Chen , Zilong Wang , Shaorun Lin , Yunzhu Qin , Xinyan Huang
{"title":"A review on biomass thermal-oxidative decomposition data and machine learning prediction of thermal analysis","authors":"Yuying Chen ,&nbsp;Zilong Wang ,&nbsp;Shaorun Lin ,&nbsp;Yunzhu Qin ,&nbsp;Xinyan Huang","doi":"10.1016/j.clema.2023.100206","DOIUrl":null,"url":null,"abstract":"<div><p>Thermochemical conversion is the most economical approach to recovering energy and alternative fuels from biomass feedstock. This work first reviews the literature data on thermal-oxidative decomposition for common biomass types and forms a database of 18 parameters, including element, proximate, and thermogravimetric analysis (TGA). Then, an Artificial Neural Network (ANN) model is developed for the prediction of TGA data. Pearson correlation coefficient analysis reveals that the influence of environment heating rate on biomass thermal decomposition is larger than that of fuel properties. By inputting biomass elemental/proximate analysis and heating rate, the ANN model successfully predicts 8 key TGA parameters, namely, pyrolysis-onset temperature, peak pyrolysis temperature, oxidation-dominant temperature, peak oxidation temperature, oxidation-end temperature, peak pyrolysis rate, oxidation-dominant rate, and peak oxidation rate, with R<sup>2</sup> values greater than 0.98. A better performance can be achieved when all ten input features are considered. Final, an open-access online software, Intelligent Fuel Thermal Analysis (IFTA), is developed to predict thermal-oxidative decomposition across a wide range of heating rates and biomass types. This work provides a better understanding of biomass thermal-oxidative decomposition dynamics and a shortcut to obtain key parameters of biomass degradation without TGA tests.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"9 ","pages":"Article 100206"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772397623000394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Thermochemical conversion is the most economical approach to recovering energy and alternative fuels from biomass feedstock. This work first reviews the literature data on thermal-oxidative decomposition for common biomass types and forms a database of 18 parameters, including element, proximate, and thermogravimetric analysis (TGA). Then, an Artificial Neural Network (ANN) model is developed for the prediction of TGA data. Pearson correlation coefficient analysis reveals that the influence of environment heating rate on biomass thermal decomposition is larger than that of fuel properties. By inputting biomass elemental/proximate analysis and heating rate, the ANN model successfully predicts 8 key TGA parameters, namely, pyrolysis-onset temperature, peak pyrolysis temperature, oxidation-dominant temperature, peak oxidation temperature, oxidation-end temperature, peak pyrolysis rate, oxidation-dominant rate, and peak oxidation rate, with R2 values greater than 0.98. A better performance can be achieved when all ten input features are considered. Final, an open-access online software, Intelligent Fuel Thermal Analysis (IFTA), is developed to predict thermal-oxidative decomposition across a wide range of heating rates and biomass types. This work provides a better understanding of biomass thermal-oxidative decomposition dynamics and a shortcut to obtain key parameters of biomass degradation without TGA tests.

Abstract Image

生物质热氧化分解数据及热分析的机器学习预测研究进展
热化学转化是从生物质原料中回收能源和替代燃料的最经济的方法。这项工作首先回顾了常见生物质类型的热氧化分解的文献数据,并形成了一个包含18个参数的数据库,包括元素、近似和热重分析(TGA)。然后,建立了一个用于TGA数据预测的人工神经网络模型。Pearson相关系数分析表明,环境升温速率对生物质热分解的影响大于燃料性质。通过输入生物质元素/近似分析和加热速率,ANN模型成功预测了8个关键的TGA参数,即热解起始温度、热解峰值温度、氧化主导温度、氧化峰值温度、反应结束温度、热解速率峰值、氧化主导速率和氧化速率峰值,R2值大于0.98。当考虑所有十个输入特征时,可以实现更好的性能。Final是一款开放式在线软件,名为智能燃料热分析(IFTA),用于预测各种加热速率和生物质类型的热氧化分解。这项工作提供了对生物质热氧化分解动力学的更好理解,并为在没有TGA测试的情况下获得生物质降解的关键参数提供了捷径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信