Nanofluidic osmotic power generation from CO2 with cellulose membranes

Chang Chen , Xueli Liu , Renxing Huang , Kuankuan Liu , Shangfa Pan , Junchao Lao , Qi Li , Jun Gao , Lei Jiang
{"title":"Nanofluidic osmotic power generation from CO2 with cellulose membranes","authors":"Chang Chen ,&nbsp;Xueli Liu ,&nbsp;Renxing Huang ,&nbsp;Kuankuan Liu ,&nbsp;Shangfa Pan ,&nbsp;Junchao Lao ,&nbsp;Qi Li ,&nbsp;Jun Gao ,&nbsp;Lei Jiang","doi":"10.1016/j.greenca.2023.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>The diffusion of chemical species down concentration gradient is a ubiquitous phenomenon that releases Gibbs free energy. Nanofluidic materials have shown great promise in harvesting the energy from ionic diffusion via the reverse electrodialysis process. In principle, any chemicals that can be converted to ions can be used for nanofluidic power generation. In this work, we demonstrate the power generation from the diffusion of CO<sub>2</sub> into air using nanofluidic cellulose membranes. By dissolving CO<sub>2</sub> in water, a power density of 87 mW/m<sup>2</sup> can be achieved. Using monoethanolamine solutions to dissolve CO<sub>2</sub>, the power density can be increased to 2.6 W/m<sup>2</sup>. We further demonstrate that the waste heat released in the industrial processes and carbon capture processes, etc., can be simultaneously harvested with our nanofluidic membranes, increasing the power density up to 16 W/m<sup>2</sup> under a temperature difference of 30 °C. Therefore, our work should expand the application scope of nanofluidic osmotic power generation and contribute to the carbon utilization and capture technologies.</p></div>","PeriodicalId":100595,"journal":{"name":"Green Carbon","volume":"1 1","pages":"Pages 58-64"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Carbon","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S295015552300006X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The diffusion of chemical species down concentration gradient is a ubiquitous phenomenon that releases Gibbs free energy. Nanofluidic materials have shown great promise in harvesting the energy from ionic diffusion via the reverse electrodialysis process. In principle, any chemicals that can be converted to ions can be used for nanofluidic power generation. In this work, we demonstrate the power generation from the diffusion of CO2 into air using nanofluidic cellulose membranes. By dissolving CO2 in water, a power density of 87 mW/m2 can be achieved. Using monoethanolamine solutions to dissolve CO2, the power density can be increased to 2.6 W/m2. We further demonstrate that the waste heat released in the industrial processes and carbon capture processes, etc., can be simultaneously harvested with our nanofluidic membranes, increasing the power density up to 16 W/m2 under a temperature difference of 30 °C. Therefore, our work should expand the application scope of nanofluidic osmotic power generation and contribute to the carbon utilization and capture technologies.

纤维素膜纳米流体渗透发电技术
化学物质沿浓度梯度向下扩散是一种普遍存在的释放吉布斯自由能的现象。纳米流体材料在通过反向电渗析过程从离子扩散中获取能量方面显示出巨大的前景。原则上,任何可以转化为离子的化学物质都可以用于纳米流体发电。在这项工作中,我们展示了使用纳米流体纤维素膜将CO2扩散到空气中产生的电力。通过将CO2溶解在水中,可以实现87mW/m2的功率密度。使用单乙醇胺溶液来溶解CO2,功率密度可以增加到2.6W/m2。我们进一步证明,工业过程和碳捕获过程等中释放的废热可以与我们的纳米流体膜同时收集,在30°C的温差下将功率密度提高到16W/m2。因此,我们的工作应该扩大纳米流体渗透发电的应用范围,为碳的利用和捕获技术做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信