Defect-engineered graphene-on-silicon-carbide platform for magnetic field sensing at greatly elevated temperatures

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tymoteusz Ciuk , Roman Kozłowski , Agata Romanowska , Andrzej Zagojski , Karolina Piętak-Jurczak , Beata Stańczyk , Krystyna Przyborowska , Dariusz Czołak , Paweł Kamiński
{"title":"Defect-engineered graphene-on-silicon-carbide platform for magnetic field sensing at greatly elevated temperatures","authors":"Tymoteusz Ciuk ,&nbsp;Roman Kozłowski ,&nbsp;Agata Romanowska ,&nbsp;Andrzej Zagojski ,&nbsp;Karolina Piętak-Jurczak ,&nbsp;Beata Stańczyk ,&nbsp;Krystyna Przyborowska ,&nbsp;Dariusz Czołak ,&nbsp;Paweł Kamiński","doi":"10.1016/j.cartre.2023.100303","DOIUrl":null,"url":null,"abstract":"<div><p>High-temperature electrical properties of p-type hydrogen-intercalated quasi-free-standing epitaxial Chemical Vapor Deposition graphene on semi-insulating vanadium-compensated on-axis 6H-SiC(0001) and high-purity on-axis 4H-SiC(0001) originate from the double-carrier system of spontaneous-polarization-induced holes in graphene and thermally-activated electrons in the substrate. In this study, we pre-epitaxially modify SiC by implanting hydrogen (H<sup>+</sup>) and helium (He<sup>+</sup>) ions with energies ranging from 20 keV to 50 keV to reconstruct its post-epitaxial defect structure and suppress the thermally-developed electron channel. Through a combination of dark current measurements and High-Resolution Photo-Induced Transient Spectroscopy between 300 K and 700 K, we monitor the impact of ion bombardment on the transport properties of SiC and reveal activation energies of the individual deep-level defects. We find that the ion implantation has a negligible effect on 6H-SiC. Yet in 4H-SiC, it shifts the Fermi level from ∼600 meV to ∼800 meV below the minimum of the conduction band and reduces the electron concentration by two orders of magnitude. Specifically, it eliminates deep electron traps related to silicon vacancies in the charge state (2-/-) occupying the <em>h</em> and <em>k</em> sites of the 4H-SiC lattice. Finally, we directly implement the protocol of deep-level defect engineering in the technology of amorphous-aluminum-oxide-passivated Hall effect sensors and introduce a mature sensory platform with record-linear current-mode sensitivity of approximately 80 V/AT with -0.03-%/K stability in a broad temperature range between 300 K and 770 K, and likely far beyond 770 K.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056923000585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-temperature electrical properties of p-type hydrogen-intercalated quasi-free-standing epitaxial Chemical Vapor Deposition graphene on semi-insulating vanadium-compensated on-axis 6H-SiC(0001) and high-purity on-axis 4H-SiC(0001) originate from the double-carrier system of spontaneous-polarization-induced holes in graphene and thermally-activated electrons in the substrate. In this study, we pre-epitaxially modify SiC by implanting hydrogen (H+) and helium (He+) ions with energies ranging from 20 keV to 50 keV to reconstruct its post-epitaxial defect structure and suppress the thermally-developed electron channel. Through a combination of dark current measurements and High-Resolution Photo-Induced Transient Spectroscopy between 300 K and 700 K, we monitor the impact of ion bombardment on the transport properties of SiC and reveal activation energies of the individual deep-level defects. We find that the ion implantation has a negligible effect on 6H-SiC. Yet in 4H-SiC, it shifts the Fermi level from ∼600 meV to ∼800 meV below the minimum of the conduction band and reduces the electron concentration by two orders of magnitude. Specifically, it eliminates deep electron traps related to silicon vacancies in the charge state (2-/-) occupying the h and k sites of the 4H-SiC lattice. Finally, we directly implement the protocol of deep-level defect engineering in the technology of amorphous-aluminum-oxide-passivated Hall effect sensors and introduce a mature sensory platform with record-linear current-mode sensitivity of approximately 80 V/AT with -0.03-%/K stability in a broad temperature range between 300 K and 770 K, and likely far beyond 770 K.

Abstract Image

缺陷工程石墨烯-碳化硅在高温下的磁场传感平台
在轴6H-SiC(0001)上补偿的半绝缘钒上的p型氢嵌入准独立外延化学气相沉积石墨烯和轴4H-SiC(001)上的高纯度石墨烯的高温电学性质源于石墨烯中自发极化诱导空穴和衬底中热激活电子的双载子系统。在本研究中,我们通过注入能量从20keV到50keV的氢(H+)和氦(He+)离子来预外延改性SiC,以重建其外延后缺陷结构并抑制热发展的电子通道。通过结合暗电流测量和300K至700K之间的高分辨率光致瞬态光谱,我们监测了离子轰击对SiC传输特性的影响,并揭示了单个深能级缺陷的激活能。我们发现离子注入对6H-SiC的影响可以忽略不计。然而,在4H-SiC中,它将费米能级从导带最小值以下的~600meV移动到~800meV,并将电子浓度降低两个数量级。具体而言,它消除了与占据4H-SiC晶格的h和k位的电荷态(2-/-)中的硅空位相关的深电子陷阱。最后,我们在非晶氧化铝钝化霍尔效应传感器技术中直接实现了深层缺陷工程协议,并引入了一个成熟的传感平台,其记录线性电流模式灵敏度约为80V/AT,在300K至770K之间的宽温度范围内,可能远超770K,稳定性为-0.03-%/K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信