Balaji Ragupathi , Matthias Florian Bacher , Frank Balle
{"title":"First efforts on recovery of thermoplastic composites at low temperatures by power ultrasonics","authors":"Balaji Ragupathi , Matthias Florian Bacher , Frank Balle","doi":"10.1016/j.clema.2023.100186","DOIUrl":null,"url":null,"abstract":"<div><p>Fiber reinforced composites possess exceptional mass-specific properties and therefore offer a high potential for weight reduction in lightweight applications. However, the need to recover, remanufacture and recirculate polymer composites at lower temperatures is still an area to be addressed. For a cleaner and more sustainable reuse of polymer composites at their end-of-use (EoU) phase, a materials circularity strategy can be applied. This work describes a novel method and proof-of-concept to recover carbon-fiber (CF)/ polyether-ether-ketone (PEEK) composites. It is composed of three steps: i.) initiation of controlled interlaminar pre-cracks by power ultrasonics, ii.) propagation of the pre-cracks under peel-like loading, and iii.) ultrasonic reconsolidation of the separated layers. Microscopic and mechanical investigations on the composite materials before and after the separation and reconsolidation, shows near-identical fiber-bundle arrangements, with the reconsolidated composites retaining approximately 89 % of its mechanical properties compared to the original laminate.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"8 ","pages":"Article 100186"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772397623000199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Fiber reinforced composites possess exceptional mass-specific properties and therefore offer a high potential for weight reduction in lightweight applications. However, the need to recover, remanufacture and recirculate polymer composites at lower temperatures is still an area to be addressed. For a cleaner and more sustainable reuse of polymer composites at their end-of-use (EoU) phase, a materials circularity strategy can be applied. This work describes a novel method and proof-of-concept to recover carbon-fiber (CF)/ polyether-ether-ketone (PEEK) composites. It is composed of three steps: i.) initiation of controlled interlaminar pre-cracks by power ultrasonics, ii.) propagation of the pre-cracks under peel-like loading, and iii.) ultrasonic reconsolidation of the separated layers. Microscopic and mechanical investigations on the composite materials before and after the separation and reconsolidation, shows near-identical fiber-bundle arrangements, with the reconsolidated composites retaining approximately 89 % of its mechanical properties compared to the original laminate.