First efforts on recovery of thermoplastic composites at low temperatures by power ultrasonics

Balaji Ragupathi , Matthias Florian Bacher , Frank Balle
{"title":"First efforts on recovery of thermoplastic composites at low temperatures by power ultrasonics","authors":"Balaji Ragupathi ,&nbsp;Matthias Florian Bacher ,&nbsp;Frank Balle","doi":"10.1016/j.clema.2023.100186","DOIUrl":null,"url":null,"abstract":"<div><p>Fiber reinforced composites possess exceptional mass-specific properties and therefore offer a high potential for weight reduction in lightweight applications. However, the need to recover, remanufacture and recirculate polymer composites at lower temperatures is still an area to be addressed. For a cleaner and more sustainable reuse of polymer composites at their end-of-use (EoU) phase, a materials circularity strategy can be applied. This work describes a novel method and proof-of-concept to recover carbon-fiber (CF)/ polyether-ether-ketone (PEEK) composites. It is composed of three steps: i.) initiation of controlled interlaminar pre-cracks by power ultrasonics, ii.) propagation of the pre-cracks under peel-like loading, and iii.) ultrasonic reconsolidation of the separated layers. Microscopic and mechanical investigations on the composite materials before and after the separation and reconsolidation, shows near-identical fiber-bundle arrangements, with the reconsolidated composites retaining approximately 89 % of its mechanical properties compared to the original laminate.</p></div>","PeriodicalId":100254,"journal":{"name":"Cleaner Materials","volume":"8 ","pages":"Article 100186"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772397623000199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Fiber reinforced composites possess exceptional mass-specific properties and therefore offer a high potential for weight reduction in lightweight applications. However, the need to recover, remanufacture and recirculate polymer composites at lower temperatures is still an area to be addressed. For a cleaner and more sustainable reuse of polymer composites at their end-of-use (EoU) phase, a materials circularity strategy can be applied. This work describes a novel method and proof-of-concept to recover carbon-fiber (CF)/ polyether-ether-ketone (PEEK) composites. It is composed of three steps: i.) initiation of controlled interlaminar pre-cracks by power ultrasonics, ii.) propagation of the pre-cracks under peel-like loading, and iii.) ultrasonic reconsolidation of the separated layers. Microscopic and mechanical investigations on the composite materials before and after the separation and reconsolidation, shows near-identical fiber-bundle arrangements, with the reconsolidated composites retaining approximately 89 % of its mechanical properties compared to the original laminate.

热塑性复合材料的低温功率超声回收研究
纤维增强复合材料具有特殊的质量特性,因此在轻质应用中具有很高的减重潜力。然而,在较低温度下回收、再制造和再循环聚合物复合材料的需求仍然是一个需要解决的领域。为了在聚合物复合材料的使用结束(EoU)阶段实现更清洁、更可持续的再利用,可以应用材料循环策略。本文介绍了一种回收碳纤维(CF)/聚醚醚酮(PEEK)复合材料的新方法和概念验证。它由三个步骤组成:i.)通过功率超声引发受控层间预裂纹,ii.)预裂纹在剥离状载荷下的扩展,以及iii.)分离层的超声再固结。分离和再固结前后对复合材料的微观和力学研究表明,纤维束排列几乎相同,与原始层压板相比,再固结的复合材料保留了约89%的机械性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信