Seismic prompt gravity strain signals in a layered spherical Earth

IF 1.2 4区 地球科学 Q3 Earth and Planetary Sciences
Shenjian Zhang , Rongjiang Wang , Xiaofei Chen
{"title":"Seismic prompt gravity strain signals in a layered spherical Earth","authors":"Shenjian Zhang ,&nbsp;Rongjiang Wang ,&nbsp;Xiaofei Chen","doi":"10.1016/j.eqs.2023.09.002","DOIUrl":null,"url":null,"abstract":"<div><p>Seismic waves generated by an earthquake can produce dynamic perturbations in the Earth’s gravity field before the direct arrival of P-waves. Observations of these so-called prompt elasto-gravity signals by ground-based gravimeters and broadband seismometers have been reported for some large events, such as the 2011 <em>M</em><sub>W</sub>9.1 Tohoku earthquake. Recent studies have introduced prompt gravity strain signals (PGSSs) as a new type of observable seismic gravity perturbation that can be used to measure the spatial gradient of the perturbed gravity field. Theoretically, these types of signals can be recorded by in-development instruments termed gravity strainmeters, although no successful detection has been reported as yet. Herein, we propose an efficient approach for PGSSs based on a multilayered spherical Earth model. We compared the simulated waveforms with analytical solutions obtained from a homogeneous half-space model, which has been used in earlier studies. This comparison indicates that the effect of the Earth’s structural stratification is significant. With the help of the new simulation approach, we also demonstrated how the PGSSs depend on the magnitude of the seismic source. We further conducted synthetic tests estimating earthquake magnitude using gravity strain signals to demonstrate the potential application of this type of signal in earthquake early warning systems. These results provide essential information for future studies on the synthesis and application of earthquake-induced gravity strain signals.</p></div>","PeriodicalId":46333,"journal":{"name":"Earthquake Science","volume":"36 5","pages":"Pages 341-355"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Science","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674451923000459","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

Seismic waves generated by an earthquake can produce dynamic perturbations in the Earth’s gravity field before the direct arrival of P-waves. Observations of these so-called prompt elasto-gravity signals by ground-based gravimeters and broadband seismometers have been reported for some large events, such as the 2011 MW9.1 Tohoku earthquake. Recent studies have introduced prompt gravity strain signals (PGSSs) as a new type of observable seismic gravity perturbation that can be used to measure the spatial gradient of the perturbed gravity field. Theoretically, these types of signals can be recorded by in-development instruments termed gravity strainmeters, although no successful detection has been reported as yet. Herein, we propose an efficient approach for PGSSs based on a multilayered spherical Earth model. We compared the simulated waveforms with analytical solutions obtained from a homogeneous half-space model, which has been used in earlier studies. This comparison indicates that the effect of the Earth’s structural stratification is significant. With the help of the new simulation approach, we also demonstrated how the PGSSs depend on the magnitude of the seismic source. We further conducted synthetic tests estimating earthquake magnitude using gravity strain signals to demonstrate the potential application of this type of signal in earthquake early warning systems. These results provide essential information for future studies on the synthesis and application of earthquake-induced gravity strain signals.

层状球形地球中的地震提示重力应变信号
地震产生的地震波可以在P波直接到达之前在地球重力场中产生动态扰动。据报道,地面重力仪和宽带地震仪在一些大型事件中观测到了这些所谓的即时弹性重力信号,如2011年东北9.1级地震。最近的研究引入了即时重力应变信号(PGSS)作为一种新型的可观测地震重力扰动,可用于测量扰动重力场的空间梯度。从理论上讲,这些类型的信号可以通过称为重力应变仪的开发中的仪器记录下来,尽管目前还没有成功检测的报告。在此,我们提出了一种基于多层球形地球模型的PGSS的有效方法。我们将模拟波形与从齐次半空间模型获得的解析解进行了比较,该模型已在早期研究中使用。这种比较表明,地球结构分层的影响是显著的。在新的模拟方法的帮助下,我们还演示了PGSS如何取决于震源的震级。我们进一步进行了利用重力应变信号估计地震震级的综合测试,以证明这类信号在地震预警系统中的潜在应用。这些结果为未来研究地震重力应变信号的合成和应用提供了重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earthquake Science
Earthquake Science GEOCHEMISTRY & GEOPHYSICS-
CiteScore
1.10
自引率
8.30%
发文量
42
审稿时长
3 months
期刊介绍: Earthquake Science (EQS) aims to publish high-quality, original, peer-reviewed articles on earthquake-related research subjects. It is an English international journal sponsored by the Seismological Society of China and the Institute of Geophysics, China Earthquake Administration. The topics include, but not limited to, the following ● Seismic sources of all kinds. ● Earth structure at all scales. ● Seismotectonics. ● New methods and theoretical seismology. ● Strong ground motion. ● Seismic phenomena of all kinds. ● Seismic hazards, earthquake forecasting and prediction. ● Seismic instrumentation. ● Significant recent or past seismic events. ● Documentation of recent seismic events or important observations. ● Descriptions of field deployments, new methods, and available software tools. The types of manuscripts include the following. There is no length requirement, except for the Short Notes. 【Articles】 Original contributions that have not been published elsewhere. 【Short Notes】 Short papers of recent events or topics that warrant rapid peer reviews and publications. Limited to 4 publication pages. 【Rapid Communications】 Significant contributions that warrant rapid peer reviews and publications. 【Review Articles】Review articles are by invitation only. Please contact the editorial office and editors for possible proposals. 【Toolboxes】 Descriptions of novel numerical methods and associated computer codes. 【Data Products】 Documentation of datasets of various kinds that are interested to the community and available for open access (field data, processed data, synthetic data, or models). 【Opinions】Views on important topics and future directions in earthquake science. 【Comments and Replies】Commentaries on a recently published EQS paper is welcome. The authors of the paper commented will be invited to reply. Both the Comment and the Reply are subject to peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信