Distributed hybrid control for heterogeneous multi-agent systems subject to deception attacks and its application to secondary control for DC microgrid
{"title":"Distributed hybrid control for heterogeneous multi-agent systems subject to deception attacks and its application to secondary control for DC microgrid","authors":"Shuangye Mo , Wu-Hua Chen , Hao Sun , Qian Wan","doi":"10.1016/j.apm.2023.09.015","DOIUrl":null,"url":null,"abstract":"<div><p>This paper addresses the mean-square quasi-consensus problem for a class of heterogeneous multi-agent systems (MASs) with cascade-type two-layer structure subject to discrete-time deception attacks. A two-layer distributed hybrid controller is proposed based on the structural characteristics of the considered MASs. The deception attacks are supposed to occur in the upper-layer communication channel and their occurrences are modeled by a Bernoulli process<span><span>. The discrete-time deception signal is considered as a bounded external disturbance sequence, so the mean-square quasi-consensus problem can be reduced to a mean-square exponential input-to-state stability (MSEISS) problem. A novel MSEISS analysis method combined with the use of a weighted discontinuous </span>Lyapunov function<span> is developed to establish a MSEISS criterion of the consensus error system, where the robustness performance of the mean-square quasi-consensus with respect to the randomly occurring deception attacks is quantified by the MSEISS gain. The effectiveness of the proposed resilient distributed hybrid control algorithm is verified through numerical simulations. Specifically, the proposed resilient control algorithm is applied to the secondary control of DC microgrid with discrete interaction. Several case studies show that the resulting resilient distributed hybrid secondary control algorithm has a good robustness performance on resisting the deception attacks.</span></span></p></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"125 ","pages":"Pages 48-65"},"PeriodicalIF":4.4000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Modelling","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0307904X23004225","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the mean-square quasi-consensus problem for a class of heterogeneous multi-agent systems (MASs) with cascade-type two-layer structure subject to discrete-time deception attacks. A two-layer distributed hybrid controller is proposed based on the structural characteristics of the considered MASs. The deception attacks are supposed to occur in the upper-layer communication channel and their occurrences are modeled by a Bernoulli process. The discrete-time deception signal is considered as a bounded external disturbance sequence, so the mean-square quasi-consensus problem can be reduced to a mean-square exponential input-to-state stability (MSEISS) problem. A novel MSEISS analysis method combined with the use of a weighted discontinuous Lyapunov function is developed to establish a MSEISS criterion of the consensus error system, where the robustness performance of the mean-square quasi-consensus with respect to the randomly occurring deception attacks is quantified by the MSEISS gain. The effectiveness of the proposed resilient distributed hybrid control algorithm is verified through numerical simulations. Specifically, the proposed resilient control algorithm is applied to the secondary control of DC microgrid with discrete interaction. Several case studies show that the resulting resilient distributed hybrid secondary control algorithm has a good robustness performance on resisting the deception attacks.
期刊介绍:
Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged.
This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering.
Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.