Chao Li , Yuying Xing , Ying Xin , Bin Li , Francesco Grilli
{"title":"Time-dependent development of dynamic resistance voltage of superconducting tape considering heat accumulation","authors":"Chao Li , Yuying Xing , Ying Xin , Bin Li , Francesco Grilli","doi":"10.1016/j.supcon.2023.100066","DOIUrl":null,"url":null,"abstract":"<div><p>In flux pumps, motors and superconducting magnets, the high temperature superconductor (HTS) coated conductor frequently carries a DC transport current when an oscillating magnetic field is present in the background. Under this circumstance, the interesting effect of dynamic resistance takes place, which can affect the operating performance of superconducting devices: heat accumulation can contribute to the rising temperature of the HTS tape and the dynamic resistance voltage can change accordingly. This article explores the time-dependent development of the dynamic resistance voltage using a numerical modeling considering the thermal effects. After a validation against experimental results, this work investigates the effects of several factors on the structure of the HTS tape on the time-dependent development of the dynamic resistance, thus providing insights toward a better understanding of the time-dependent behavior of HTS tapes under external magnetic fields.</p></div>","PeriodicalId":101185,"journal":{"name":"Superconductivity","volume":"8 ","pages":"Article 100066"},"PeriodicalIF":5.6000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772830723000315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
In flux pumps, motors and superconducting magnets, the high temperature superconductor (HTS) coated conductor frequently carries a DC transport current when an oscillating magnetic field is present in the background. Under this circumstance, the interesting effect of dynamic resistance takes place, which can affect the operating performance of superconducting devices: heat accumulation can contribute to the rising temperature of the HTS tape and the dynamic resistance voltage can change accordingly. This article explores the time-dependent development of the dynamic resistance voltage using a numerical modeling considering the thermal effects. After a validation against experimental results, this work investigates the effects of several factors on the structure of the HTS tape on the time-dependent development of the dynamic resistance, thus providing insights toward a better understanding of the time-dependent behavior of HTS tapes under external magnetic fields.