Usefulness of current sgRNA design guidelines and in vitro cleavage assays for plant CRISPR/Cas genome editing: a case targeting the polyphenol oxidase gene family in eggplant (Solanum melongena L.).

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2023-12-01 Epub Date: 2023-10-24 DOI:10.1007/s11248-023-00371-9
Mark Gabriel S Sagarbarria, John Albert M Caraan, Angelo John G Layos
{"title":"Usefulness of current sgRNA design guidelines and in vitro cleavage assays for plant CRISPR/Cas genome editing: a case targeting the polyphenol oxidase gene family in eggplant (Solanum melongena L.).","authors":"Mark Gabriel S Sagarbarria, John Albert M Caraan, Angelo John G Layos","doi":"10.1007/s11248-023-00371-9","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of genome editing platforms such as the CRISPR/Cas9 system ushers an unprecedented speed in the development of new crop varieties that can withstand the agricultural challenges of the 21st century. The CRISPR/Cas9 system depends on the specificity of engineered single guide RNAs (sgRNAs). However, sgRNA design in plants can be challenging due to the multitude of design tools to choose from, many of which use guidelines that are based on animal experiments yet allow the use of plant genomes. Upon choosing sgRNAs, it is also unclear whether an in vitro assay is needed to validate the targeting efficiency of a particular sgRNA before in vivo delivery of the CRISPR/Cas9 system. Here, we demonstrate the in vitro and in vivo activity of four different sgRNAs that we selected based on their ability to target multiple members of the eggplant polyphenol oxidase gene family. Some sgRNAs that have high in vitro cleavage activity did not produce edits in vivo, suggesting that an in vitro assay may not be a reliable basis to predict sgRNAs with highly efficient in vivo cleavage activity. Further analysis of our sgRNAs using other design algorithms suggest that plant-validated criteria such as the presence of necessary secondary structures and appropriate base-pairing may be the reason for the discrepancy between our observed in vitro and in vivo cleavage efficiencies. However, recent reports and our data suggests that there is no guaranteed way to ensure the in vivo cleavage of chosen sgRNAs.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11248-023-00371-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of genome editing platforms such as the CRISPR/Cas9 system ushers an unprecedented speed in the development of new crop varieties that can withstand the agricultural challenges of the 21st century. The CRISPR/Cas9 system depends on the specificity of engineered single guide RNAs (sgRNAs). However, sgRNA design in plants can be challenging due to the multitude of design tools to choose from, many of which use guidelines that are based on animal experiments yet allow the use of plant genomes. Upon choosing sgRNAs, it is also unclear whether an in vitro assay is needed to validate the targeting efficiency of a particular sgRNA before in vivo delivery of the CRISPR/Cas9 system. Here, we demonstrate the in vitro and in vivo activity of four different sgRNAs that we selected based on their ability to target multiple members of the eggplant polyphenol oxidase gene family. Some sgRNAs that have high in vitro cleavage activity did not produce edits in vivo, suggesting that an in vitro assay may not be a reliable basis to predict sgRNAs with highly efficient in vivo cleavage activity. Further analysis of our sgRNAs using other design algorithms suggest that plant-validated criteria such as the presence of necessary secondary structures and appropriate base-pairing may be the reason for the discrepancy between our observed in vitro and in vivo cleavage efficiencies. However, recent reports and our data suggests that there is no guaranteed way to ensure the in vivo cleavage of chosen sgRNAs.

Abstract Image

当前sgRNA设计指南和体外切割试验在植物CRISPR/Cas基因组编辑中的用途:一个针对茄子多酚氧化酶基因家族的案例(茄属)。
CRISPR/Cas9系统等基因组编辑平台的出现,为能够抵御21世纪农业挑战的新作物品种的开发带来了前所未有的速度。CRISPR/Cas9系统依赖于工程单引导RNA(sgRNA)的特异性。然而,植物中的sgRNA设计可能具有挑战性,因为有多种设计工具可供选择,其中许多工具使用基于动物实验的指南,但允许使用植物基因组。在选择sgRNA时,还不清楚在体内递送CRISPR/Cas9系统之前是否需要体外测定来验证特定sgRNA的靶向效率。在这里,我们展示了四种不同sgRNA的体外和体内活性,我们根据它们靶向茄子多酚氧化酶基因家族多个成员的能力选择了它们。一些具有高体外切割活性的sgRNA在体内没有产生编辑,这表明体外测定可能不是预测具有高效体内切割活性的SGRNA的可靠基础。使用其他设计算法对我们的sgRNA进行的进一步分析表明,植物验证的标准,如必要的二级结构和适当的碱基配对的存在,可能是我们观察到的体外和体内切割效率之间存在差异的原因。然而,最近的报告和我们的数据表明,没有保证的方法来确保所选sgRNA的体内切割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信