Jing Chen, Lijie Zhang, Jingyu Lin, Zeng Wang, Aiyu Lin
{"title":"Excessive MALAT1 promotes the immunologic process of neuromyelitis optica spectrum disorder by upregulating BAFF expression.","authors":"Jing Chen, Lijie Zhang, Jingyu Lin, Zeng Wang, Aiyu Lin","doi":"10.1515/tnsci-2022-0306","DOIUrl":null,"url":null,"abstract":"<p><p>Increased B cell activating factor (BAFF) expression in patients with neuromyelitis optica spectrum disorder (NMOSD) is associated with B cell overstimulation, but the underlying mechanism remains unclear. This study aimed to reveal the emerging mechanisms that regulate BAFF expression in the inflammatory process of NMOSD. The results showed that the expression of miR-30b-5p was significantly decreased in NMOSD CD14<sup>+</sup> monocytes compared with the normal control. Furthermore, we confirmed that metastasis-associated lung adenocarcinoma transcription 1 (MALAT1) is an upstream target of miR-30b-5p, and it could act as a ceRNA and absorb miR-30b-5p with reduced expression of miR-30b-5p. The low expression of miR-30b-5p could not bind to BAFF messenger RNA (mRNA), which resulted in the overexpression of both BAFF mRNA and protein expression. Overexpression of BAFF could bind to the corresponding receptors on B cells, which may initiate activation and proliferation of B cells and increase their production of autoantibodies. Therefore, these findings interpreted that excessive MALAT1 expression in NMOSD mononuclear macrophages led to increased BAFF expression by targeting miR-30b-5p, which caused B cell autoimmune reaction and autoantibodies production, aggravated the disease progression of NMOSD.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":"14 1","pages":"20220306"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590614/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/tnsci-2022-0306","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Increased B cell activating factor (BAFF) expression in patients with neuromyelitis optica spectrum disorder (NMOSD) is associated with B cell overstimulation, but the underlying mechanism remains unclear. This study aimed to reveal the emerging mechanisms that regulate BAFF expression in the inflammatory process of NMOSD. The results showed that the expression of miR-30b-5p was significantly decreased in NMOSD CD14+ monocytes compared with the normal control. Furthermore, we confirmed that metastasis-associated lung adenocarcinoma transcription 1 (MALAT1) is an upstream target of miR-30b-5p, and it could act as a ceRNA and absorb miR-30b-5p with reduced expression of miR-30b-5p. The low expression of miR-30b-5p could not bind to BAFF messenger RNA (mRNA), which resulted in the overexpression of both BAFF mRNA and protein expression. Overexpression of BAFF could bind to the corresponding receptors on B cells, which may initiate activation and proliferation of B cells and increase their production of autoantibodies. Therefore, these findings interpreted that excessive MALAT1 expression in NMOSD mononuclear macrophages led to increased BAFF expression by targeting miR-30b-5p, which caused B cell autoimmune reaction and autoantibodies production, aggravated the disease progression of NMOSD.
期刊介绍:
Translational Neuroscience provides a closer interaction between basic and clinical neuroscientists to expand understanding of brain structure, function and disease, and translate this knowledge into clinical applications and novel therapies of nervous system disorders.