Plasma Environment, Radiation, Structure, and Evolution of the Uranian System (PERSEUS): A Dedicated Orbiter Mission Concept to Study Space Physics at Uranus.

IF 9.1 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Space Science Reviews Pub Date : 2023-01-01 Epub Date: 2023-10-19 DOI:10.1007/s11214-023-01013-6
Ian J Cohen, Evan J Smith, George B Clark, Drew L Turner, Donald H Ellison, Ben Clare, Leonardo H Regoli, Peter Kollmann, Daniel T Gallagher, G Allan Holtzman, Justin J Likar, Takeshi Morizono, Matthew Shannon, Kimberly S Vodusek
{"title":"Plasma Environment, Radiation, Structure, and Evolution of the Uranian System (PERSEUS): A Dedicated Orbiter Mission Concept to Study Space Physics at Uranus.","authors":"Ian J Cohen,&nbsp;Evan J Smith,&nbsp;George B Clark,&nbsp;Drew L Turner,&nbsp;Donald H Ellison,&nbsp;Ben Clare,&nbsp;Leonardo H Regoli,&nbsp;Peter Kollmann,&nbsp;Daniel T Gallagher,&nbsp;G Allan Holtzman,&nbsp;Justin J Likar,&nbsp;Takeshi Morizono,&nbsp;Matthew Shannon,&nbsp;Kimberly S Vodusek","doi":"10.1007/s11214-023-01013-6","DOIUrl":null,"url":null,"abstract":"<p><p>The Plasma Environment, Radiation, Structure, and Evolution of the Uranian System (PERSEUS) mission concept defines the feasibility and potential scope of a dedicated, standalone Heliophysics orbiter mission to study multiple space physics science objectives at Uranus. Uranus's complex and dynamic magnetosphere presents a unique laboratory to study magnetospheric physics as well as its coupling to the solar wind and the planet's atmosphere, satellites, and rings. From the planet's tilted and offset, rapidly-rotating non-dipolar magnetic field to its seasonally-extreme interactions with the solar wind to its unexpectedly intense electron radiation belts, Uranus hosts a range of outstanding and compelling mysteries relevant to the space physics community. While the exploration of planets other than Earth has largely fallen within the purview of NASA's Planetary Science Division, many targets, like Uranus, also hold immense scientific value and interest to NASA's Heliophysics Division. Exploring and understanding Uranus's magnetosphere is critical to make fundamental gains in magnetospheric physics and the understanding of potential exoplanetary systems and to test the validity of our knowledge of magnetospheric dynamics, moon-magnetosphere interactions, magnetosphere-ionosphere coupling, and solar wind-planetary coupling. The PERSEUS mission concept study, currently at Concept Maturity Level (CML) 4, comprises a feasible payload that provides closure to a range of space physics science objectives in a reliable and mature spacecraft and mission design architecture. The mission is able to close using only a single Mod-1 Next-Generation Radioisotope Thermoelectric Generator (NG-RTG) by leveraging a concept of operations that relies of a significant hibernation mode for a large portion of its 22-day orbit.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"219 8","pages":"65"},"PeriodicalIF":9.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10587260/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Science Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11214-023-01013-6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Plasma Environment, Radiation, Structure, and Evolution of the Uranian System (PERSEUS) mission concept defines the feasibility and potential scope of a dedicated, standalone Heliophysics orbiter mission to study multiple space physics science objectives at Uranus. Uranus's complex and dynamic magnetosphere presents a unique laboratory to study magnetospheric physics as well as its coupling to the solar wind and the planet's atmosphere, satellites, and rings. From the planet's tilted and offset, rapidly-rotating non-dipolar magnetic field to its seasonally-extreme interactions with the solar wind to its unexpectedly intense electron radiation belts, Uranus hosts a range of outstanding and compelling mysteries relevant to the space physics community. While the exploration of planets other than Earth has largely fallen within the purview of NASA's Planetary Science Division, many targets, like Uranus, also hold immense scientific value and interest to NASA's Heliophysics Division. Exploring and understanding Uranus's magnetosphere is critical to make fundamental gains in magnetospheric physics and the understanding of potential exoplanetary systems and to test the validity of our knowledge of magnetospheric dynamics, moon-magnetosphere interactions, magnetosphere-ionosphere coupling, and solar wind-planetary coupling. The PERSEUS mission concept study, currently at Concept Maturity Level (CML) 4, comprises a feasible payload that provides closure to a range of space physics science objectives in a reliable and mature spacecraft and mission design architecture. The mission is able to close using only a single Mod-1 Next-Generation Radioisotope Thermoelectric Generator (NG-RTG) by leveraging a concept of operations that relies of a significant hibernation mode for a large portion of its 22-day orbit.

Abstract Image

Abstract Image

Abstract Image

天王星系统的等离子体环境、辐射、结构和演化(PERSEUS):研究天王星空间物理的专用轨道飞行器任务概念。
天王星系统的等离子体环境、辐射、结构和演化(PERSEUS)任务概念定义了专门的独立太阳物理轨道飞行器任务的可行性和潜在范围,以研究天王星的多个空间物理科学目标。天王星复杂而动态的磁层为研究磁层物理及其与太阳风、行星大气层、卫星和环的耦合提供了一个独特的实验室。从天王星的倾斜和偏移、快速旋转的非偶极磁场,到它与太阳风的季节性极端相互作用,再到它出乎意料的强烈电子辐射带,天王星拥有一系列与空间物理学界相关的杰出而令人信服的奥秘。虽然对地球以外行星的探索在很大程度上属于美国国家航空航天局行星科学部门的职权范围,但许多目标,如天王星,也对美国国家航空宇航局太阳物理部门具有巨大的科学价值和兴趣。探索和了解天王星的磁层对于在磁层物理学和对潜在系外行星系统的理解方面取得根本进展,并测试我们对磁层动力学、月球-磁层相互作用、磁层-电离层耦合和太阳-风-行星耦合的知识的有效性至关重要。PERSEUS任务概念研究目前处于概念成熟度级别(CML)4,包括一个可行的有效载荷,在可靠和成熟的航天器和任务设计架构中实现一系列空间物理科学目标。该任务仅使用一个Mod-1下一代放射性同位素热电发生器(NG-RTG)就可以完成,这是通过利用在其22天轨道的大部分时间里依赖于重要休眠模式的操作概念实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Space Science Reviews
Space Science Reviews 地学天文-天文与天体物理
CiteScore
19.70
自引率
3.90%
发文量
60
审稿时长
4-8 weeks
期刊介绍: Space Science Reviews (SSRv) stands as an international journal dedicated to scientific space research, offering a contemporary synthesis across various branches of space exploration. Emphasizing scientific outcomes and instruments, SSRv spans astrophysics, physics of planetary systems, solar physics, and the physics of magnetospheres & interplanetary matter. Beyond Topical Collections and invited Review Articles, Space Science Reviews welcomes unsolicited Review Articles and Special Communications. The latter encompass papers related to a prior topical volume/collection, report-type papers, or timely contributions addressing a robust combination of space science and technology. These papers succinctly summarize both the science and technology aspects of instruments or missions in a single publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信