{"title":"Potential of thermoresponsive hydrogel as an alternative therapy for rat knee osteoarthritis.","authors":"Yi Kung, Wei-Chun Chien, Hsin-Hsin Shen, Sen-Lu Chen, Wei-Lin Yu, Yu-Chi Wang, Wen-Shiang Chen, Chueh-Hung Wu","doi":"10.1177/08853282231208506","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis is a degenerative condition that is highly prevalent and primarily affects the joints. The knee is the most commonly affected site, impacting the lives of over 300 million individuals worldwide. This study presents a potential solution to address the unmet need for a minimally invasive technique in the treatment of osteoarthritis: a biocompatible, injectable, and thermoresponsive hydrogel. In comparison to commercially available products such as lyophilized platelets, dextrose, and triamcinolone, the thermoresponsive hydrogel exhibits significantly superior performance in dynamic behaviors, including print area, stability, and step cycle, when tested on rats with knee osteoarthritis. However, it demonstrates similar treatment efficacy to these products in static behaviors, as observed through histopathological and immunohistochemical analysis. Therefore, the thermoresponsive hydrogel holds promise as an effective alternative therapy for osteoarthritis. Moreover, by blending the hydrogel with drugs, controlled and sustained release can be achieved, thereby facilitating the long-term management of osteoarthritis symptoms.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"707-718"},"PeriodicalIF":2.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282231208506","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoarthritis is a degenerative condition that is highly prevalent and primarily affects the joints. The knee is the most commonly affected site, impacting the lives of over 300 million individuals worldwide. This study presents a potential solution to address the unmet need for a minimally invasive technique in the treatment of osteoarthritis: a biocompatible, injectable, and thermoresponsive hydrogel. In comparison to commercially available products such as lyophilized platelets, dextrose, and triamcinolone, the thermoresponsive hydrogel exhibits significantly superior performance in dynamic behaviors, including print area, stability, and step cycle, when tested on rats with knee osteoarthritis. However, it demonstrates similar treatment efficacy to these products in static behaviors, as observed through histopathological and immunohistochemical analysis. Therefore, the thermoresponsive hydrogel holds promise as an effective alternative therapy for osteoarthritis. Moreover, by blending the hydrogel with drugs, controlled and sustained release can be achieved, thereby facilitating the long-term management of osteoarthritis symptoms.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.