{"title":"Scaphoid numerical simulation of the critical loading until fracture","authors":"Ana B. Maroto , Pedro Navas , Felicia Alfano","doi":"10.1016/j.jmbbm.2023.106186","DOIUrl":null,"url":null,"abstract":"<div><p>The numerical study of the scaphoid fracture, although it is relatively unexplored, can be of great clinical interest since it is highly common and can result in temporary or persistent disability.</p><p>In this manuscript, seven combinations of boundary conditions and contacts between adjacent bones, together with four different loads, simulating real hand movements, are assessed.</p><p>Three different fracture criteria for bones are employed to study the failure of the scaphoid with the aforementioned combination of interaction conditions. The results offer an interesting view of the accuracy of the possible interaction between adjacent bones. For future calculation, it would be possible to choose a combination of the balance between precision and computational cost savings.</p><p>This study provides a comprehensive assessment into the modeling of the scaphoid bone and its interactions with adjacent bones. The findings reveal that various choices of interactions can yield similar results, allowing for flexibility in selecting interaction models based on desired accuracy or computational efficiency. Ultimately, this study establishes a foundational understanding for future research on modeling scaphoid motion.</p></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"148 ","pages":"Article 106186"},"PeriodicalIF":3.3000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616123005398","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The numerical study of the scaphoid fracture, although it is relatively unexplored, can be of great clinical interest since it is highly common and can result in temporary or persistent disability.
In this manuscript, seven combinations of boundary conditions and contacts between adjacent bones, together with four different loads, simulating real hand movements, are assessed.
Three different fracture criteria for bones are employed to study the failure of the scaphoid with the aforementioned combination of interaction conditions. The results offer an interesting view of the accuracy of the possible interaction between adjacent bones. For future calculation, it would be possible to choose a combination of the balance between precision and computational cost savings.
This study provides a comprehensive assessment into the modeling of the scaphoid bone and its interactions with adjacent bones. The findings reveal that various choices of interactions can yield similar results, allowing for flexibility in selecting interaction models based on desired accuracy or computational efficiency. Ultimately, this study establishes a foundational understanding for future research on modeling scaphoid motion.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.