Depth recordings of the mouse homologue of the Reward Positivity.

IF 2.5 3区 医学 Q2 BEHAVIORAL SCIENCES
Penelope Kehrer, Jonathan L Brigman, James F Cavanagh
{"title":"Depth recordings of the mouse homologue of the Reward Positivity.","authors":"Penelope Kehrer, Jonathan L Brigman, James F Cavanagh","doi":"10.3758/s13415-023-01134-z","DOIUrl":null,"url":null,"abstract":"<p><p>We recently advanced a rodent homologue for the reward-specific, event-related potential component observed in humans known as the Reward Positivity. We sought to determine the cortical source of this signal in mice to further test the nature of this homology. While similar reward-related cortical signals have been identified in rats, these recordings were all performed in cingulate gyrus. Given the value-dependent nature of this event, we hypothesized that more ventral prelimbic and infralimbic areas also contribute important variance to this signal. Depth probes assessed local field activity in 29 mice (15 males) while they completed multiple sessions of a probabilistic reinforcement learning task. Using a priori regions of interest, we demonstrated that the depth of recording in the cortical midline significantly correlated with the size of reward-evoked delta band spectral activity as well as the single trial correlation between delta power and reward prediction error. These findings provide important verification of the validity of this translational biomarker of reward responsiveness, learning, and valuation.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Affective & Behavioral Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3758/s13415-023-01134-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We recently advanced a rodent homologue for the reward-specific, event-related potential component observed in humans known as the Reward Positivity. We sought to determine the cortical source of this signal in mice to further test the nature of this homology. While similar reward-related cortical signals have been identified in rats, these recordings were all performed in cingulate gyrus. Given the value-dependent nature of this event, we hypothesized that more ventral prelimbic and infralimbic areas also contribute important variance to this signal. Depth probes assessed local field activity in 29 mice (15 males) while they completed multiple sessions of a probabilistic reinforcement learning task. Using a priori regions of interest, we demonstrated that the depth of recording in the cortical midline significantly correlated with the size of reward-evoked delta band spectral activity as well as the single trial correlation between delta power and reward prediction error. These findings provide important verification of the validity of this translational biomarker of reward responsiveness, learning, and valuation.

Abstract Image

奖励阳性小鼠同源物的深度记录。
我们最近提出了一种啮齿动物同源物,用于在人类中观察到的奖励特异性、事件相关的潜在成分,称为奖励阳性。我们试图确定小鼠这种信号的皮层来源,以进一步测试这种同源性的性质。虽然在大鼠身上也发现了类似的奖励相关皮层信号,但这些记录都是在扣带回进行的。考虑到这一事件的价值依赖性,我们假设更多的腹侧边缘前和边缘下区域也对这一信号有重要的影响。深度探针评估了29只小鼠(15只雄性)在完成多次概率强化学习任务时的局部场活动。使用先验感兴趣区域,我们证明了皮层中线的记录深度与奖励诱发的δ带频谱活动的大小以及δ功率和奖励预测误差之间的单次试验相关性显著相关。这些发现为这种奖励反应性、学习和评估的翻译生物标志物的有效性提供了重要的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.40%
发文量
64
审稿时长
6-12 weeks
期刊介绍: Cognitive, Affective, & Behavioral Neuroscience (CABN) offers theoretical, review, and primary research articles on behavior and brain processes in humans. Coverage includes normal function as well as patients with injuries or processes that influence brain function: neurological disorders, including both healthy and disordered aging; and psychiatric disorders such as schizophrenia and depression. CABN is the leading vehicle for strongly psychologically motivated studies of brain–behavior relationships, through the presentation of papers that integrate psychological theory and the conduct and interpretation of the neuroscientific data. The range of topics includes perception, attention, memory, language, problem solving, reasoning, and decision-making; emotional processes, motivation, reward prediction, and affective states; and individual differences in relevant domains, including personality. Cognitive, Affective, & Behavioral Neuroscience is a publication of the Psychonomic Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信