Signalling pathways and cell death mechanisms in glaucoma: Insights into the molecular pathophysiology

IF 8.7 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Devaraj Basavarajappa , Caridad Galindo-Romero , Vivek Gupta , Marta Agudo-Barriuso , Veer B. Gupta , Stuart L. Graham , Nitin Chitranshi
{"title":"Signalling pathways and cell death mechanisms in glaucoma: Insights into the molecular pathophysiology","authors":"Devaraj Basavarajappa ,&nbsp;Caridad Galindo-Romero ,&nbsp;Vivek Gupta ,&nbsp;Marta Agudo-Barriuso ,&nbsp;Veer B. Gupta ,&nbsp;Stuart L. Graham ,&nbsp;Nitin Chitranshi","doi":"10.1016/j.mam.2023.101216","DOIUrl":null,"url":null,"abstract":"<div><p>Glaucoma is a complex multifactorial eye disease manifesting in retinal ganglion cell (RGC) death and optic nerve degeneration, ultimately causing irreversible vision loss. Research in recent years has significantly enhanced our understanding of RGC degenerative mechanisms in glaucoma. It is evident that high intraocular pressure (IOP) is not the only contributing factor to glaucoma pathogenesis. The equilibrium of pro-survival and pro-death signalling pathways in the retina strongly influences the function and survival of RGCs and optic nerve axons in glaucoma. Molecular evidence from human retinal tissue analysis and a range of experimental models of glaucoma have significantly contributed to unravelling these mechanisms. Accumulating evidence reveals a wide range of molecular signalling pathways that can operate -either alone or via intricate networks - to induce neurodegeneration. The roles of several molecules, including neurotrophins, interplay of intracellular kinases and phosphates, caveolae and adapter proteins, serine proteases and their inhibitors, nuclear receptors, amyloid beta and tau, and how their dysfunction affects retinal neurons are discussed in this review. We further underscore how anatomical alterations in various animal models exhibiting RGC degeneration and susceptibility to glaucoma-related neuronal damage have helped to characterise molecular mechanisms in glaucoma. In addition, we also present different regulated cell death pathways that play a critical role in RGC degeneration in glaucoma.</p></div>","PeriodicalId":49798,"journal":{"name":"Molecular Aspects of Medicine","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Aspects of Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098299723000560","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glaucoma is a complex multifactorial eye disease manifesting in retinal ganglion cell (RGC) death and optic nerve degeneration, ultimately causing irreversible vision loss. Research in recent years has significantly enhanced our understanding of RGC degenerative mechanisms in glaucoma. It is evident that high intraocular pressure (IOP) is not the only contributing factor to glaucoma pathogenesis. The equilibrium of pro-survival and pro-death signalling pathways in the retina strongly influences the function and survival of RGCs and optic nerve axons in glaucoma. Molecular evidence from human retinal tissue analysis and a range of experimental models of glaucoma have significantly contributed to unravelling these mechanisms. Accumulating evidence reveals a wide range of molecular signalling pathways that can operate -either alone or via intricate networks - to induce neurodegeneration. The roles of several molecules, including neurotrophins, interplay of intracellular kinases and phosphates, caveolae and adapter proteins, serine proteases and their inhibitors, nuclear receptors, amyloid beta and tau, and how their dysfunction affects retinal neurons are discussed in this review. We further underscore how anatomical alterations in various animal models exhibiting RGC degeneration and susceptibility to glaucoma-related neuronal damage have helped to characterise molecular mechanisms in glaucoma. In addition, we also present different regulated cell death pathways that play a critical role in RGC degeneration in glaucoma.

青光眼的信号通路和细胞死亡机制:对分子病理生理学的见解。
青光眼是一种复杂的多因素眼病,表现为视网膜神经节细胞(RGC)死亡和视神经变性,最终导致不可逆转的视力丧失。近年来的研究显著增强了我们对青光眼RGC退行性机制的理解。很明显,高眼压并不是青光眼发病机制的唯一因素。视网膜中促存活和促死亡信号通路的平衡强烈影响青光眼中RGCs和视神经轴突的功能和存活。来自人类视网膜组织分析和一系列青光眼实验模型的分子证据对揭示这些机制做出了重大贡献。越来越多的证据揭示了一系列分子信号通路,这些通路可以单独或通过复杂的网络诱导神经退行性变。本文讨论了几种分子的作用,包括神经营养因子、细胞内激酶和磷酸盐的相互作用、小窝蛋白和衔接蛋白、丝氨酸蛋白酶及其抑制剂、核受体、淀粉样蛋白β和tau,以及它们的功能障碍如何影响视网膜神经元。我们进一步强调了显示RGC变性和对青光眼相关神经元损伤易感性的各种动物模型的解剖变化如何有助于表征青光眼的分子机制。此外,我们还提出了不同的调节细胞死亡途径,这些途径在青光眼RGC变性中起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Aspects of Medicine
Molecular Aspects of Medicine 医学-生化与分子生物学
CiteScore
18.20
自引率
0.00%
发文量
85
审稿时长
55 days
期刊介绍: Molecular Aspects of Medicine is a review journal that serves as an official publication of the International Union of Biochemistry and Molecular Biology. It caters to physicians and biomedical scientists and aims to bridge the gap between these two fields. The journal encourages practicing clinical scientists to contribute by providing extended reviews on the molecular aspects of a specific medical field. These articles are written in a way that appeals to both doctors who may struggle with basic science and basic scientists who may have limited awareness of clinical practice issues. The journal covers a wide range of medical topics to showcase the molecular insights gained from basic science and highlight the challenging problems that medicine presents to the scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信