{"title":"The implications of satellite DNA instability on cellular function and evolution","authors":"Jullien M. Flynn , Yukiko M. Yamashita","doi":"10.1016/j.semcdb.2023.10.005","DOIUrl":null,"url":null,"abstract":"<div><p>Abundant tandemly repeated satellite DNA<span><span> is present in most eukaryotic genomes. Previous limitations including a pervasive view that it was uninteresting junk DNA, combined with challenges in studying it, are starting to dissolve - and recent studies have found important functions for satellite DNAs. The observed rapid evolution and implied instability of satellite DNA now has important significance for their functions and maintenance within the genome. In this review, we discuss the processes that lead to satellite DNA copy number instability, and the importance of mechanisms to manage the potential negative effects of instability. Satellite DNA is vulnerable to challenges during replication and repair, since it forms difficult-to-process secondary structures and its homology within tandem arrays can result in various types of recombination. Satellite DNA instability may be managed by DNA or chromatin-binding proteins ensuring proper nuclear localization and repair, or by proteins that process aberrant structures that satellite DNAs tend to form. We also discuss the pattern of satellite </span>DNA mutations<span> from recent mutation accumulation (MA) studies that have tracked changes in satellite DNA for up to 1000 generations with minimal selection. Finally, we highlight examples of satellite evolution from studies that have characterized satellites across millions of years of Drosophila fruit fly evolution, and discuss possible ways that selection might act on the satellite DNA composition.</span></span></p></div>","PeriodicalId":21735,"journal":{"name":"Seminars in cell & developmental biology","volume":"156 ","pages":"Pages 152-159"},"PeriodicalIF":6.2000,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in cell & developmental biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084952123001726","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Abundant tandemly repeated satellite DNA is present in most eukaryotic genomes. Previous limitations including a pervasive view that it was uninteresting junk DNA, combined with challenges in studying it, are starting to dissolve - and recent studies have found important functions for satellite DNAs. The observed rapid evolution and implied instability of satellite DNA now has important significance for their functions and maintenance within the genome. In this review, we discuss the processes that lead to satellite DNA copy number instability, and the importance of mechanisms to manage the potential negative effects of instability. Satellite DNA is vulnerable to challenges during replication and repair, since it forms difficult-to-process secondary structures and its homology within tandem arrays can result in various types of recombination. Satellite DNA instability may be managed by DNA or chromatin-binding proteins ensuring proper nuclear localization and repair, or by proteins that process aberrant structures that satellite DNAs tend to form. We also discuss the pattern of satellite DNA mutations from recent mutation accumulation (MA) studies that have tracked changes in satellite DNA for up to 1000 generations with minimal selection. Finally, we highlight examples of satellite evolution from studies that have characterized satellites across millions of years of Drosophila fruit fly evolution, and discuss possible ways that selection might act on the satellite DNA composition.
期刊介绍:
Seminars in Cell and Developmental Biology is a review journal dedicated to keeping scientists informed of developments in the field of molecular cell and developmental biology, on a topic by topic basis. Each issue is thematic in approach, devoted to an important topic of interest to cell and developmental biologists, focusing on the latest advances and their specific implications.
The aim of each issue is to provide a coordinated, readable, and lively review of a selected area, published rapidly to ensure currency.