Effects of psilocybin, the 5-HT2A receptor agonist TCB-2, and the 5-HT2A receptor antagonist M100907 on visual attention in male mice in the continuous performance test.
{"title":"Effects of psilocybin, the 5-HT<sub>2A</sub> receptor agonist TCB-2, and the 5-HT<sub>2A</sub> receptor antagonist M100907 on visual attention in male mice in the continuous performance test.","authors":"Arya Rahbarnia, Zhaoxia Li, Paul J Fletcher","doi":"10.1007/s00213-023-06474-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale: </strong>Neuropsychiatric disorders such as depression are characterized in part by attention deficits. Attention is modulated by the serotonin (5-HT) neurotransmitter system. The 5-HT<sub>2A</sub> agonist and hallucinogen psilocybin (PSI) is a promising treatment for disorders characterized by attention changes. However, few studies have investigated PSI's direct effect on attention.</p><p><strong>Objective: </strong>Using the rodent continuous performance task (CPT), we assessed PSI's effect on attention. We also evaluated the impact of 5-HT<sub>2A</sub> receptor agonist TCB-2 and antagonist M100907 for comparative purposes.</p><p><strong>Methods: </strong>In the CPT, mice learned to distinguish visual targets from non-targets for milkshake reward. Performance was then tested following injections of PSI (0.3, 1, and 3 mg/kg), TCB-2 (0.3, 1, and 3 mg/kg), or M100907 (0.1, 0.3, and 1 mg/kg). Subsequently, drug effects were then evaluated using a more difficult CPT with variable stimulus durations. Mice were then tested on the CPT following repeated PSI injections. Drug effects on locomotor activity were also measured.</p><p><strong>Results: </strong>In the CPT, all three drugs reduced hit and false alarm rate and induced conservative responding. PSI also reduced target discrimination. These effects were seen primarily at doses that also significantly reduced locomotor activity. No drug effects were seen on the more difficult CPT or following repeated PSI injections.</p><p><strong>Conclusions: </strong>Psilocybin, TCB-2, and M100907 impaired performance of the CPT. However, this may be in part due to drug-induced locomotor changes. The results provide little support for the idea that psilocybin alters visual attention, or that 5-HT<sub>2A</sub> receptors modulate this process.</p>","PeriodicalId":20783,"journal":{"name":"Psychopharmacology","volume":" ","pages":"1563-1575"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00213-023-06474-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale: Neuropsychiatric disorders such as depression are characterized in part by attention deficits. Attention is modulated by the serotonin (5-HT) neurotransmitter system. The 5-HT2A agonist and hallucinogen psilocybin (PSI) is a promising treatment for disorders characterized by attention changes. However, few studies have investigated PSI's direct effect on attention.
Objective: Using the rodent continuous performance task (CPT), we assessed PSI's effect on attention. We also evaluated the impact of 5-HT2A receptor agonist TCB-2 and antagonist M100907 for comparative purposes.
Methods: In the CPT, mice learned to distinguish visual targets from non-targets for milkshake reward. Performance was then tested following injections of PSI (0.3, 1, and 3 mg/kg), TCB-2 (0.3, 1, and 3 mg/kg), or M100907 (0.1, 0.3, and 1 mg/kg). Subsequently, drug effects were then evaluated using a more difficult CPT with variable stimulus durations. Mice were then tested on the CPT following repeated PSI injections. Drug effects on locomotor activity were also measured.
Results: In the CPT, all three drugs reduced hit and false alarm rate and induced conservative responding. PSI also reduced target discrimination. These effects were seen primarily at doses that also significantly reduced locomotor activity. No drug effects were seen on the more difficult CPT or following repeated PSI injections.
Conclusions: Psilocybin, TCB-2, and M100907 impaired performance of the CPT. However, this may be in part due to drug-induced locomotor changes. The results provide little support for the idea that psilocybin alters visual attention, or that 5-HT2A receptors modulate this process.
期刊介绍:
Official Journal of the European Behavioural Pharmacology Society (EBPS)
Psychopharmacology is an international journal that covers the broad topic of elucidating mechanisms by which drugs affect behavior. The scope of the journal encompasses the following fields:
Human Psychopharmacology: Experimental
This section includes manuscripts describing the effects of drugs on mood, behavior, cognition and physiology in humans. The journal encourages submissions that involve brain imaging, genetics, neuroendocrinology, and developmental topics. Usually manuscripts in this section describe studies conducted under controlled conditions, but occasionally descriptive or observational studies are also considered.
Human Psychopharmacology: Clinical and Translational
This section comprises studies addressing the broad intersection of drugs and psychiatric illness. This includes not only clinical trials and studies of drug usage and metabolism, drug surveillance, and pharmacoepidemiology, but also work utilizing the entire range of clinically relevant methodologies, including neuroimaging, pharmacogenetics, cognitive science, biomarkers, and others. Work directed toward the translation of preclinical to clinical knowledge is especially encouraged. The key feature of submissions to this section is that they involve a focus on clinical aspects.
Preclinical psychopharmacology: Behavioral and Neural
This section considers reports on the effects of compounds with defined chemical structures on any aspect of behavior, in particular when correlated with neurochemical effects, in species other than humans. Manuscripts containing neuroscientific techniques in combination with behavior are welcome. We encourage reports of studies that provide insight into the mechanisms of drug action, at the behavioral and molecular levels.
Preclinical Psychopharmacology: Translational
This section considers manuscripts that enhance the confidence in a central mechanism that could be of therapeutic value for psychiatric or neurological patients, using disease-relevant preclinical models and tests, or that report on preclinical manipulations and challenges that have the potential to be translated to the clinic. Studies aiming at the refinement of preclinical models based upon clinical findings (back-translation) will also be considered. The journal particularly encourages submissions that integrate measures of target tissue exposure, activity on the molecular target and/or modulation of the targeted biochemical pathways.
Preclinical Psychopharmacology: Molecular, Genetic and Epigenetic
This section focuses on the molecular and cellular actions of neuropharmacological agents / drugs, and the identification / validation of drug targets affecting the CNS in health and disease. We particularly encourage studies that provide insight into the mechanisms of drug action at the molecular level. Manuscripts containing evidence for genetic or epigenetic effects on neurochemistry or behavior are welcome.