PRMT1 accelerates cell proliferation, migration, and tumor growth by upregulating ZEB1/H4R3me2as in thyroid carcinoma.

IF 3.8 3区 医学 Q2 ONCOLOGY
Oncology reports Pub Date : 2023-12-01 Epub Date: 2023-10-20 DOI:10.3892/or.2023.8647
Guoli Feng, Changju Chen, Yi Luo
{"title":"PRMT1 accelerates cell proliferation, migration, and tumor growth by upregulating ZEB1/H4R3me2as in thyroid carcinoma.","authors":"Guoli Feng, Changju Chen, Yi Luo","doi":"10.3892/or.2023.8647","DOIUrl":null,"url":null,"abstract":"<p><p>Thyroid carcinoma (TC) represents the most prevalent malignancy of the endocrine system. Protein arginine methyltransferase 1 (PRMT1) is a critical member of the protein arginine methyltransferase family in mammals and is involved in multiple biological processes. This study aimed to investigate the function of PRMT1 in TC. In the present study, human TC cell lines (8505C, CAL62, and BCPAP) and a normal human thyroid cell line Nthy‑ori 3‑1 were employed. Small interfering RNA targeting PRMT1 was used to knock down PRMT1 expression in 8505C cells, and PRMT1 overexpression plasmids were transfected into BCPAP cells. Cell viability was assessed using a CCK‑8 and colony formation assays. Apoptosis was measured using flow cytometry and TUNEL assays. Cell migration was assessed using wound healing and Transwell assays. Reverse transcription‑quantitative PCR was used to determine the mRNA expression levels of PRMT1. Western blotting was used to detect the protein expression levels of PRMT1, E‑cadherin, vimentin, H4R3me2as, and zinc‑finger E homeobox‑binding 1 (ZEB1). Notably, PRMT1 expression was elevated in TC (P<0.01). PRMT1 knockdown inhibited TC cell proliferation and migration and concurrently enhanced migration. Furthermore, PRMT1 knockdown suppressed tumor growth and metastasis in a mouse model of TC. PRMT1 downregulation increased E‑cadherin expression and decreased the expression of vimentin, H4R3me2as, and ZEB1 in the TC cells and the mouse model of TC. Conversely, PRMT1 overexpression had the opposite effect on TC malignant characteristics (P<0.05). These findings suggest that PRMT1 knockdown inhibited TC malignancy by downregulating H4R3me2as/ZEB1, thereby highlighting novel therapeutic targets and diagnostic markers for the management of TC.</p>","PeriodicalId":19527,"journal":{"name":"Oncology reports","volume":"50 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b0/79/or-50-06-08647.PMC10603553.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncology reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/or.2023.8647","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Thyroid carcinoma (TC) represents the most prevalent malignancy of the endocrine system. Protein arginine methyltransferase 1 (PRMT1) is a critical member of the protein arginine methyltransferase family in mammals and is involved in multiple biological processes. This study aimed to investigate the function of PRMT1 in TC. In the present study, human TC cell lines (8505C, CAL62, and BCPAP) and a normal human thyroid cell line Nthy‑ori 3‑1 were employed. Small interfering RNA targeting PRMT1 was used to knock down PRMT1 expression in 8505C cells, and PRMT1 overexpression plasmids were transfected into BCPAP cells. Cell viability was assessed using a CCK‑8 and colony formation assays. Apoptosis was measured using flow cytometry and TUNEL assays. Cell migration was assessed using wound healing and Transwell assays. Reverse transcription‑quantitative PCR was used to determine the mRNA expression levels of PRMT1. Western blotting was used to detect the protein expression levels of PRMT1, E‑cadherin, vimentin, H4R3me2as, and zinc‑finger E homeobox‑binding 1 (ZEB1). Notably, PRMT1 expression was elevated in TC (P<0.01). PRMT1 knockdown inhibited TC cell proliferation and migration and concurrently enhanced migration. Furthermore, PRMT1 knockdown suppressed tumor growth and metastasis in a mouse model of TC. PRMT1 downregulation increased E‑cadherin expression and decreased the expression of vimentin, H4R3me2as, and ZEB1 in the TC cells and the mouse model of TC. Conversely, PRMT1 overexpression had the opposite effect on TC malignant characteristics (P<0.05). These findings suggest that PRMT1 knockdown inhibited TC malignancy by downregulating H4R3me2as/ZEB1, thereby highlighting novel therapeutic targets and diagnostic markers for the management of TC.

Abstract Image

Abstract Image

Abstract Image

PRMT1通过上调甲状腺癌中的ZEB1/H4R3me2as来加速细胞增殖、迁移和肿瘤生长。
甲状腺癌(TC)是内分泌系统中最常见的恶性肿瘤。蛋白质精氨酸甲基转移酶1(PRMT1)是哺乳动物蛋白质精氨酰甲基转移酶家族的重要成员,参与多种生物学过程。本研究旨在研究PRMT1在TC中的功能。在本研究中,使用了人类TC细胞系(8505C、CAL62和BCPAP)和正常人类甲状腺细胞系Nthy‑ori 3-1。使用靶向PRMT1的小干扰RNA敲低8505C细胞中PRMT1表达,并将PRMT1过表达质粒转染到BCPAP细胞中。使用CCK-8和集落形成测定法评估细胞活力。使用流式细胞术和TUNEL测定法测定细胞凋亡。使用伤口愈合和Transwell测定法评估细胞迁移。逆转录定量PCR用于测定PRMT1的mRNA表达水平。蛋白质印迹用于检测PRMT1、E-钙粘蛋白、波形蛋白、H4R3me2as和锌指E-同源框结合1(ZEB1)的蛋白质表达水平。值得注意的是,PRMT1在TC中的表达升高(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Oncology reports
Oncology reports 医学-肿瘤学
CiteScore
8.50
自引率
2.40%
发文量
187
审稿时长
3 months
期刊介绍: Oncology Reports is a monthly, peer-reviewed journal devoted to the publication of high quality original studies and reviews concerning a broad and comprehensive view of fundamental and applied research in oncology, focusing on carcinogenesis, metastasis and epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信