A rhythmically pulsing leaf-spring DNA-origami nanoengine that drives a passive follower

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mathias Centola, Erik Poppleton, Sujay Ray, Martin Centola, Robb Welty, Julián Valero, Nils G. Walter, Petr Šulc, Michael Famulok
{"title":"A rhythmically pulsing leaf-spring DNA-origami nanoengine that drives a passive follower","authors":"Mathias Centola, Erik Poppleton, Sujay Ray, Martin Centola, Robb Welty, Julián Valero, Nils G. Walter, Petr Šulc, Michael Famulok","doi":"10.1038/s41565-023-01516-x","DOIUrl":null,"url":null,"abstract":"Molecular engineering seeks to create functional entities for modular use in the bottom-up design of nanoassemblies that can perform complex tasks. Such systems require fuel-consuming nanomotors that can actively drive downstream passive followers. Most artificial molecular motors are driven by Brownian motion, in which, with few exceptions, the generated forces are non-directed and insufficient for efficient transfer to passive second-level components. Consequently, efficient chemical-fuel-driven nanoscale driver–follower systems have not yet been realized. Here we present a DNA nanomachine (70 nm × 70 nm × 12 nm) driven by the chemical energy of DNA-templated RNA-transcription-consuming nucleoside triphosphates as fuel to generate a rhythmic pulsating motion of two rigid DNA-origami arms. Furthermore, we demonstrate actuation control and the simple coupling of the active nanomachine with a passive follower, to which it then transmits its motion, forming a true driver–follower pair. An autonomous DNA-origami nanomachine powered by the chemical energy of DNA-templated RNA-transcription-consuming nucleoside triphosphates as fuel performs rhythmic pulsations is demonstrated. In combination with a passive follower, the nanomachine acts as a mechanical driver with molecular precision.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"19 2","pages":"226-236"},"PeriodicalIF":38.1000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41565-023-01516-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-023-01516-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular engineering seeks to create functional entities for modular use in the bottom-up design of nanoassemblies that can perform complex tasks. Such systems require fuel-consuming nanomotors that can actively drive downstream passive followers. Most artificial molecular motors are driven by Brownian motion, in which, with few exceptions, the generated forces are non-directed and insufficient for efficient transfer to passive second-level components. Consequently, efficient chemical-fuel-driven nanoscale driver–follower systems have not yet been realized. Here we present a DNA nanomachine (70 nm × 70 nm × 12 nm) driven by the chemical energy of DNA-templated RNA-transcription-consuming nucleoside triphosphates as fuel to generate a rhythmic pulsating motion of two rigid DNA-origami arms. Furthermore, we demonstrate actuation control and the simple coupling of the active nanomachine with a passive follower, to which it then transmits its motion, forming a true driver–follower pair. An autonomous DNA-origami nanomachine powered by the chemical energy of DNA-templated RNA-transcription-consuming nucleoside triphosphates as fuel performs rhythmic pulsations is demonstrated. In combination with a passive follower, the nanomachine acts as a mechanical driver with molecular precision.

Abstract Image

一个有节奏的脉冲叶片弹簧DNA折纸纳米引擎,驱动一个被动的追随者。
分子工程旨在创建功能实体,用于自下而上设计可以执行复杂任务的纳米组件的模块化使用。这样的系统需要能够主动驱动下游无源跟随器的消耗燃料的纳米马达。大多数人造分子马达都是由布朗运动驱动的,在布朗运动中,除了少数例外,产生的力是非定向的,不足以有效地传递到被动的二级组件。因此,高效的化学燃料驱动的纳米级驱动器-跟随器系统尚未实现。在这里,我们展示了一台DNA纳米机器(70 纳米 × 70 纳米 × 12 nm),以产生两个刚性DNA折纸臂的有节奏的脉动运动。此外,我们展示了主动纳米机器与被动跟随器的驱动控制和简单耦合,然后将其运动传递给被动跟随器,形成真正的驱动器-跟随器对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信