Quantifying colors at micrometer scale by colorimetric microscopy (C-Microscopy) approach

IF 2.5 3区 工程技术 Q1 MICROSCOPY
Benedykt R. Jany
{"title":"Quantifying colors at micrometer scale by colorimetric microscopy (C-Microscopy) approach","authors":"Benedykt R. Jany","doi":"10.1016/j.micron.2023.103557","DOIUrl":null,"url":null,"abstract":"<div><p>The color is the primal property of the objects around us and is direct manifestation of light-matter interactions. The color information is used in many different fields of science, technology and industry to investigate material properties or for identification of concentrations of substances. Usually the color information is used as a global parameter in a macro scale. To quantitatively measure color information in micro scale one needs to use dedicated microscope spectrophotometers or specialized micro-reflectance setups. Here, the Colorimetric Microscopy (C-Microscopy) approach based on digital optical microscopy and a free software is presented. The C-Microscopy approach uses color calibrated image and colorimetric calculations to obtain physically meaningful quantities i.e., dominant wavelength and excitation purity maps at micro level scale. This allows for the discovery of the local color details of samples surfaces. Later, to fully characterize the optical properties, the hyperspectral reflectance data at micro scale (reflectance as a function of wavelength for a each point) are colorimetrically recovered. The C-Microscopy approach was successfully applied to various types of samples i.e., two metamorphic rocks unakite and lapis lazuli, which are mixtures of different minerals; and to the surface of gold 99.999 % pellet, which exhibits different types of surface features. The C-Microscopy approach could be used to quantify the local optical properties changes of various materials at microscale in an accessible way. The approach is freely available as a set of python jupyter notebooks.</p></div>","PeriodicalId":18501,"journal":{"name":"Micron","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2023-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micron","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968432823001555","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

The color is the primal property of the objects around us and is direct manifestation of light-matter interactions. The color information is used in many different fields of science, technology and industry to investigate material properties or for identification of concentrations of substances. Usually the color information is used as a global parameter in a macro scale. To quantitatively measure color information in micro scale one needs to use dedicated microscope spectrophotometers or specialized micro-reflectance setups. Here, the Colorimetric Microscopy (C-Microscopy) approach based on digital optical microscopy and a free software is presented. The C-Microscopy approach uses color calibrated image and colorimetric calculations to obtain physically meaningful quantities i.e., dominant wavelength and excitation purity maps at micro level scale. This allows for the discovery of the local color details of samples surfaces. Later, to fully characterize the optical properties, the hyperspectral reflectance data at micro scale (reflectance as a function of wavelength for a each point) are colorimetrically recovered. The C-Microscopy approach was successfully applied to various types of samples i.e., two metamorphic rocks unakite and lapis lazuli, which are mixtures of different minerals; and to the surface of gold 99.999 % pellet, which exhibits different types of surface features. The C-Microscopy approach could be used to quantify the local optical properties changes of various materials at microscale in an accessible way. The approach is freely available as a set of python jupyter notebooks.

Abstract Image

通过比色显微镜(C-microscopy)方法在微米尺度上量化颜色。
颜色是我们周围物体的原始特性,也是光与物质相互作用的直接表现。颜色信息用于科学、技术和工业的许多不同领域,用于研究材料特性或识别物质浓度。通常,颜色信息被用作宏尺度中的全局参数。要在微尺度上定量测量颜色信息,需要使用专用的显微镜分光光度计或专用的微反射装置。本文介绍了基于数字光学显微镜和一个免费软件的比色显微镜(C-Microscopy)方法。C-Microscopy方法使用颜色校准图像和比色计算来获得物理上有意义的量,即微尺度上的主波长和激发纯度图。这允许发现样本表面的局部颜色细节。随后,为了充分表征光学特性,对微观尺度的高光谱反射率数据(反射率是每个点的波长的函数)进行色度恢复。C-Microscopy方法成功地应用于各种类型的样品,即两种不同矿物的混合物变质岩乌纳岩和青金石;以及99.999%金颗粒的表面,其表现出不同类型的表面特征。C-Microscopy方法可用于以一种可访问的方式在微尺度上量化各种材料的局部光学性质变化。这种方法可以作为一套python jupyter笔记本免费提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micron
Micron 工程技术-显微镜技术
CiteScore
4.30
自引率
4.20%
发文量
100
审稿时长
31 days
期刊介绍: Micron is an interdisciplinary forum for all work that involves new applications of microscopy or where advanced microscopy plays a central role. The journal will publish on the design, methods, application, practice or theory of microscopy and microanalysis, including reports on optical, electron-beam, X-ray microtomography, and scanning-probe systems. It also aims at the regular publication of review papers, short communications, as well as thematic issues on contemporary developments in microscopy and microanalysis. The journal embraces original research in which microscopy has contributed significantly to knowledge in biology, life science, nanoscience and nanotechnology, materials science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信