Facile Synthesis and Multiple Application of Ultralong-Afterglow Room Temperature Phosphorescence Aggregate Carbon Dots from Simple Raw Materials.

IF 2.6 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Fluorescence Pub Date : 2024-11-01 Epub Date: 2023-10-20 DOI:10.1007/s10895-023-03462-2
Wenping Zhu, Like Wang, Weijie Yang, Yahong Chen, Zengchen Liu, Yanxia Li, Yingying Xue
{"title":"Facile Synthesis and Multiple Application of Ultralong-Afterglow Room Temperature Phosphorescence Aggregate Carbon Dots from Simple Raw Materials.","authors":"Wenping Zhu, Like Wang, Weijie Yang, Yahong Chen, Zengchen Liu, Yanxia Li, Yingying Xue","doi":"10.1007/s10895-023-03462-2","DOIUrl":null,"url":null,"abstract":"<p><p>Owing to the ultralong afterglow, room temperature decay phosphorescence nanomaterials have aroused enough attention. In the work, by simple one-pot solid-state thermal decomposition reaction, aggregate carbon dots (CDs) was prepared from trimesic and boric acid. Based on the intermolecular hydrogen bonds and intramolecular π-π stacking weak interaction from precursors, CDs was encapsulated in boron oxide matrix and formed aggregation. The aggregate state of CDs facilitated the triplet excited states (Tn), which could induce the room temperature decay phosphorescence properties. By careful investigation, under different excitation wavelengths at 254 and 365 nm, the aggregate CDs showed > 15 s and > 3 s room temperature phosphorescence emission in the naked eye, which was associated with 1516.12 ms and 718.62 ms lifetime respectively. And the aggregate CDs exhibited widespread application in encoding encryption, optical anti-counterfeiting and fingerprint identification etc. The interesting aggregate CDs revealed unexpected ultralong-afterglow room temperature decay phosphorescence properties and the work opened a window for constructing ultralong-afterglow room temperature decay phosphorescence aggregate CDs nanomaterials.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"2601-2612"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-023-03462-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to the ultralong afterglow, room temperature decay phosphorescence nanomaterials have aroused enough attention. In the work, by simple one-pot solid-state thermal decomposition reaction, aggregate carbon dots (CDs) was prepared from trimesic and boric acid. Based on the intermolecular hydrogen bonds and intramolecular π-π stacking weak interaction from precursors, CDs was encapsulated in boron oxide matrix and formed aggregation. The aggregate state of CDs facilitated the triplet excited states (Tn), which could induce the room temperature decay phosphorescence properties. By careful investigation, under different excitation wavelengths at 254 and 365 nm, the aggregate CDs showed > 15 s and > 3 s room temperature phosphorescence emission in the naked eye, which was associated with 1516.12 ms and 718.62 ms lifetime respectively. And the aggregate CDs exhibited widespread application in encoding encryption, optical anti-counterfeiting and fingerprint identification etc. The interesting aggregate CDs revealed unexpected ultralong-afterglow room temperature decay phosphorescence properties and the work opened a window for constructing ultralong-afterglow room temperature decay phosphorescence aggregate CDs nanomaterials.

简单原料制备超长余辉室温磷光聚集体碳点及其多种应用。
室温衰减磷光纳米材料由于其超长的余辉特性引起了人们的广泛关注。本工作采用简单的一锅固态热分解反应,以三聚体和硼酸为原料制备了聚集体碳点。基于前体分子间氢键和分子内π-π堆积弱相互作用,CDs被包裹在氧化硼基体中并形成聚集。CDs的聚集态促进了三重态激发态(Tn)的形成,这可以诱导室温衰变磷光特性。通过仔细研究,在254和365nm的不同激发波长下,聚集的CDs显示 > 15秒及以上 室温磷光发射时间分别为1516.12ms和718.62ms。聚集体CDs在编码加密、光学防伪和指纹识别等方面有着广泛的应用。这些有趣的聚集体CD揭示了意想不到的超长余辉室温衰变磷光特性,为构建超长余辉室温衰减磷光聚集体CDs纳米材料打开了一扇窗户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信