Intestinal Tuft Cells: Morphology, Function, and Implications for Human Health.

IF 15.7 1区 医学 Q1 PHYSIOLOGY
Annual review of physiology Pub Date : 2024-02-12 Epub Date: 2023-10-20 DOI:10.1146/annurev-physiol-042022-030310
Jennifer B Silverman, Paige N Vega, Matthew J Tyska, Ken S Lau
{"title":"Intestinal Tuft Cells: Morphology, Function, and Implications for Human Health.","authors":"Jennifer B Silverman, Paige N Vega, Matthew J Tyska, Ken S Lau","doi":"10.1146/annurev-physiol-042022-030310","DOIUrl":null,"url":null,"abstract":"<p><p>Tuft cells are a rare and morphologically distinct chemosensory cell type found throughout many organs, including the gastrointestinal tract. These cells were identified by their unique morphologies distinguished by large apical protrusions. Ultrastructural data have begun to describe the molecular underpinnings of their cytoskeletal features, and tuft cell-enriched cytoskeletal proteins have been identified, although the connection of tuft cell morphology to tuft cell functionality has not yet been established. Furthermore, tuft cells display variations in function and identity between and within tissues, leading to the delineation of distinct tuft cell populations. As a chemosensory cell type, they display receptors that are responsive to ligands specific for their environment. While many studies have demonstrated the tuft cell response to protists and helminths in the intestine, recent research has highlighted other roles of tuft cells as well as implicated tuft cells in other disease processes including inflammation, cancer, and viral infections. Here, we review the literature on the cytoskeletal structure of tuft cells. Additionally, we focus on new research discussing tuft cell lineage, ligand-receptor interactions, tuft cell tropism, and the role of tuft cells in intestinal disease. Finally, we discuss the implication of tuft cell-targeted therapies in human health and how the morphology of tuft cells may contribute to their functionality.</p>","PeriodicalId":8196,"journal":{"name":"Annual review of physiology","volume":null,"pages":null},"PeriodicalIF":15.7000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193883/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-physiol-042022-030310","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tuft cells are a rare and morphologically distinct chemosensory cell type found throughout many organs, including the gastrointestinal tract. These cells were identified by their unique morphologies distinguished by large apical protrusions. Ultrastructural data have begun to describe the molecular underpinnings of their cytoskeletal features, and tuft cell-enriched cytoskeletal proteins have been identified, although the connection of tuft cell morphology to tuft cell functionality has not yet been established. Furthermore, tuft cells display variations in function and identity between and within tissues, leading to the delineation of distinct tuft cell populations. As a chemosensory cell type, they display receptors that are responsive to ligands specific for their environment. While many studies have demonstrated the tuft cell response to protists and helminths in the intestine, recent research has highlighted other roles of tuft cells as well as implicated tuft cells in other disease processes including inflammation, cancer, and viral infections. Here, we review the literature on the cytoskeletal structure of tuft cells. Additionally, we focus on new research discussing tuft cell lineage, ligand-receptor interactions, tuft cell tropism, and the role of tuft cells in intestinal disease. Finally, we discuss the implication of tuft cell-targeted therapies in human health and how the morphology of tuft cells may contribute to their functionality.

肠绒毛细胞:形态、功能和对人类健康的意义。
塔夫脱细胞是一种罕见的、形态上不同的化学感受细胞类型,见于包括胃肠道在内的许多器官。这些细胞通过其独特的形态进行鉴定,这些形态以巨大的顶端突起为特征。超微结构数据已经开始描述其细胞骨架特征的分子基础,并且已经鉴定出富含簇细胞的细胞骨架蛋白,尽管簇细胞形态与簇细胞功能的联系尚未建立。此外,簇状细胞在组织之间和组织内部表现出功能和身份的变化,导致不同簇状细胞群体的描绘。作为一种化学感觉细胞类型,它们显示出对环境特异性配体有反应的受体。虽然许多研究已经证明簇细胞对肠道中的原生生物和蠕虫的反应,但最近的研究强调了簇细胞的其他作用,以及簇细胞在其他疾病过程中的作用,包括炎症、癌症和病毒感染。在此,我们回顾了簇状细胞骨架结构的文献。此外,我们专注于新的研究,讨论簇细胞谱系、配体-受体相互作用、簇细胞向性以及簇细胞在肠道疾病中的作用。最后,我们讨论了簇细胞靶向治疗在人类健康中的意义,以及簇细胞的形态如何有助于其功能。《生理学年度评论》第86卷预计最终在线出版日期为2024年2月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual review of physiology
Annual review of physiology 医学-生理学
CiteScore
35.60
自引率
0.00%
发文量
41
期刊介绍: Since 1939, the Annual Review of Physiology has been highlighting significant developments in animal physiology. The journal covers diverse areas, including cardiovascular physiology, cell physiology, ecological, evolutionary, and comparative physiology, endocrinology, gastrointestinal physiology, neurophysiology, renal and electrolyte physiology, respiratory physiology, and special topics.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信