{"title":"Injectable glucose oxidase-immobilized gelatin hydrogel prevents tumor recurrence via oxidation therapy","authors":"Changkyu Lee","doi":"10.1016/j.colsurfb.2023.113581","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>In clinical practice, surgery is the preferred treatment for breast cancer; however, the high recurrence rate due to residual tumors after surgery remains a major issue. Hydrogels can reduce the side effects of residual tumors and exert strong anticancer effects, thereby showing potential as therapeutic agents for suppressing tumor recurrence after surgery. </span>Glucose oxidase<span> (GOD)-immobilized gelatin hydrogels (GOD-gelatin hydrogel) were prepared by bioorthogonal click chemistry. Then, the anticancer effect, tumor recurrence inhibition, and biodegradability of the resulting hydrogels were evaluated through cell and animal experiments. GOD-gelatin hydrogel showed cytotoxicity and anticancer effect via H</span></span><sub>2</sub>O<sub>2</sub> generation. Unlike free GOD, GOD-gelatin hydrogel remained in the surgical site after implant and continued to suppress tumor recurrence over time. The proposed GOD-gelatin hydrogel system can be easily implanted at the surgical site after tumor surgery, representing a novel treatment to suppress tumor recurrence without any systemic toxicity.</p></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"232 ","pages":"Article 113581"},"PeriodicalIF":5.4000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776523004599","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In clinical practice, surgery is the preferred treatment for breast cancer; however, the high recurrence rate due to residual tumors after surgery remains a major issue. Hydrogels can reduce the side effects of residual tumors and exert strong anticancer effects, thereby showing potential as therapeutic agents for suppressing tumor recurrence after surgery. Glucose oxidase (GOD)-immobilized gelatin hydrogels (GOD-gelatin hydrogel) were prepared by bioorthogonal click chemistry. Then, the anticancer effect, tumor recurrence inhibition, and biodegradability of the resulting hydrogels were evaluated through cell and animal experiments. GOD-gelatin hydrogel showed cytotoxicity and anticancer effect via H2O2 generation. Unlike free GOD, GOD-gelatin hydrogel remained in the surgical site after implant and continued to suppress tumor recurrence over time. The proposed GOD-gelatin hydrogel system can be easily implanted at the surgical site after tumor surgery, representing a novel treatment to suppress tumor recurrence without any systemic toxicity.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.